AMITY UNIVERSITY

RAJASTHAN

PROGRAMME STRUCTURE

$\underline{\textbf{M.TECH (CSE) 5 YEAR INTEGRATED}} \ (\textbf{B.TECH (CSE) + M.TECH.})$

(2017-22)

SEMESTER I

Code	Course	Category	L	Т	P/FW	Credit Units
UCA101	Applied Mathematics - I	CC	3	1	-	4
UCA102	Applied Physics - I – Fields & Waves	CC	2	1	-	3
UCA103	Engineering Mechanics	CC	2	1	-	3
UCA104	Introduction to Computers & Programming in C	CC	2	1	-	3
UCA105	Electrical Science	CC	2	1	-	3
UCA 106	Engineering Graphics	CC	2	-	-	2
UCA 121	Engineering Graphics Lab	CC	-	-	2	1
UCA 122	Applied Physics - I lab	CC	-	-	2	1
UCA 123	Engineering Mechanics Lab	CC	-	-	2	1
UCA 124	Programming in C Lab	CC	-	-	2	1
UCA 125	Electrical Science Lab	CC	-	-	2	1
	Oper	Elective				
	OPEN ELECTIVE- 1	OE	3	-	-	3
	Valu	ie Added	•		1	
BCS 101	English	VA	1	-	-	1
BSS 101	Behavioural Science - I	VA	1	-	-	1
	Foreign Language – I	VA	2	-	-	2
FLF 101	French					
FLG 101	German					
FLS 101	Spanish					
FLC 101	Chinese					
	Total					30

SEMESTER II

Code	Course	Category	L	Т	P/FW	Credit Units
UCA 201	Applied Mathematics – II	CC	3	1	-	4
UCA 202	Applied Physics - II – Modern Physics	CC	2	1	-	3
UCA 203	Applied Chemistry	CC	2	1	-	3
UCA 204	Data Structures using C	CC	2	1	-	3
UCA 205	Elements of Mechanical Engineering	CC	2	1	-	3
UCA 221	Applied Physics – II Lab	CC	-	-	2	1
UCA 222	Applied Chemistry Lab	CC	-	-	2	1
UCA 223	Data Structures using C Lab	CC	-	-	2	1
UCA 224	Elements of Mechanical Engineering Lab	CC	-	-	2	1
	Open	Elective				
	OPEN ELECTIVE- 2	OE	3	-	-	3
	Valu	e Added				
EVS 001	Environmental Studies	VA	4	-	-	4
BCS 201	English	VA	1	-	-	1
BSS 201	Behavioural Science - II	VA	1	-	-	1
FLF 201 FLG 201 FLS 201 FLC 201	Foreign Language – II French German Spanish Chinese	VA	2	-	-	2
	Total	1				31

TERM PAPER DURING SUMMER BREAK

SEMESTER III

Code	Course	Category	L	Т	P/FW	Credit Units
UCA 301	Database Management Systems	CC	2	1	-	3
UCA 302	Operating Systems with Unix	CC	2	1	-	3
UCA 303	Object Oriented Programming using C++	CC	2	1	-	3
UCA 304	Applied Mathematics – III	CC	3	1	-	4
UCA 305	Digital Electronics	CC	2	1	-	3
UCA 320	Term Paper (Evaluation)	CC	-	-	-	2
UCA 321	Database Management Systems lab	CC	-	-	2	1
UCA 322	Operating Systems with Unix lab	CC	-	-	2	1
UCA 323	Object Oriented Programming using C++ lab	CC	-	-	2	1
UCA 324	Digital Electronics lab	CC	-	-	2	1
	Oper	1 Elective	•		•	
	OPEN ELECTIVE- 3	OE	3	-	-	3
	Valu	ıe Added	•		•	
BCS 301	Communication Skills – I	VA	1	-	-	1
BSS 301	Behavioral Science – III	VA	1	-	-	1
FLF 301 FLG 301 FLS 301 FLC 301	Foreign Language – III French German Spanish Chinese	VA	2	-	-	2
1 LC 301	Total					29

SEMESTER IV

Code	Course	Category	L	Т	P/FW	Credit Units
UCA 401	Theory of Automata & Computation	CC	2	1	-	3
UCA 402	Discrete Mathematics	CC	3	1	-	4
UCA 403	Computer Graphics	CC	2	1	-	3
UCA 404	Data Communication & Computer Networks	DE	2	1	-	3
UCA 422	Data Communication & Computer Networks Lab	DE	-	-	2	1
UCA 421	Computer Graphics Lab	CC	-	-	2	1
	Domain Elective-I : Choose any o	ne from th	e foll	owing course	S	
UCA405	Communication Systems	DE	2	1	-	3
UCA 406	Website Design	DE	4	1		J
UCA 423	Communication Systems Lab	DE			2	1
UCA 424	Website Design Lab	DE	_	-		1
	Open Ele	ective				
	OPEN ELECTIVE -4	OE	3	-	-	3
	Value A	dded			•	
BCS 401	Communication Skills - II	VA	1	-	-	1
BSS 401	Behavioural Science - IV	VA	1	-	-	1
	Foreign Language – IV	VA	2	-	-	2
FLF 401	French					
FLG 401	German					
FLS 401	Spanish					
FLC 401	Chinese					
	Total					26

Practical Training - I: 6 - 8 Weeks

SEMESTER V

Code	Course	Category	L	Т	P/FW	Credit Units
UCA 501	Software Engineering	CC	2	1	-	3
UCA 502	Computer Architecture	CC	2	1	-	3
UCA 503	Java Programming	CC	3	-	-	3
UCA504	Data Warehousing & Data Mining	CC	3	-	-	3
UCA 521	Software Engineering Lab	CC	-	-	2	1
UCA 522	Computer Architecture Lab	CC	-	-	2	1
UCA 523	Java Programming Lab	CC	-	-	2	1
UCA524	Data Warehousing & Data Mining Lab	CC	-	-	2	1
UCA 550	Practical Training - I (Evaluation)	CC	-	-	-	6
	Domain Elective-II: Choose any o	one from th	e fol	lowing course	es	
UCA 507	E-Commerce and ERP	DE	3	1	-	4
UCA506	VHDL Programming	DE	2	1	-	3
UCA526	VHDL Programming Lab	DE	-	-	2	1
	Open Ele	ective				
	OPEN ELECTIVE -5	OE	3	-	-	3
	Value A	dded	I	l		
BCS 501	Communication Skills – III	VA	1	-	-	1
BSS 501	Behavioural Science –V	VA	1	-	-	1
	Foreign Language – V	VA	2	-	-	2
FLF 501	French					
FLG 501	German					
FLS 501	Spanish					
FLC 501	Chinese					
	Total					33

SEMESTER VI

Code	Course	Category	L	Т	P/FW	Credit Units
UCA 601	Advanced Computer Architecture	CC	3	-	-	3
UCA 602	System Programming	CC	2	1	-	3
UCA 603	Advanced Networking	CC	2	1	-	3
UCA 604	Advanced Java programming	CC	2	1	-	3
UCA 605	Microprocessor	CC	2	1	-	3
UCA 621	System Programming Lab	CC	-	-	2	1
UCA 622	Advanced Networking Lab	CC	-	-	2	1
UCA 623	Advanced Java programming Lab	CC	-	-	2	1
UCA 624	Microprocessor Lab	CC	-	-	2	1
Domain Elective-III: Choose any one from the following courses						
UCA 404	Cloud Computing	DE	3	1	-	4
UCA 607	Hypertext Preprocessor (PHP)	DE	2	1	-	3
UCA 625	PHP Lab	DE	-	-	2	1
	Oper	1 Elective				
	OPEN ELECTIVE- 6	OE	3	-	-	3
	Valı	ie Added			1	
BCS 601	Communication Skills – IV	VA	1	-	-	1
BSS 601	Behavioral Science – VI	VA	1	-	-	1
	Foreign Language – VI	VA	2	-	-	2
FLF 601	French					
FLG 601	German					
FLS 601	Spanish					
FLC 601	Chinese					
	Total					30

PRACTICAL TRAINING - II: 6 - 8 WEEKS

SEMESTER VII

Code	Course	Category	L	Т	P/FW	Credit Units
UCA 701	Artificial Intelligence	CC	2	1	-	3
UCA702	Cryptography & Network Security	CC	2	1	-	3
UCA 703	Compiler Construction	CC	2	1	-	3
UCA704	Information Storage & Management (EMC ²)	CC	3	-	-	3
UCA 721	Artificial Intelligence Lab	CC	-	-	2	1
UCA 722	Compiler Construction Lab	CC	-	-	2	1
UCA 750	Practical Training - II(Evaluation)	CC	-	-	-	6
UCA 525	Seminar	CC	-	-	-	3
	Domain Elective-IV: Choose any	one from th	ie fol	lowing course	es	
UCA705	Advanced DBMS	DE	2	1	-	
UCA706	Programming with ASP.Net	DE	2	1	-	
UCA707	Distributed Operating System	DE	2	1	-	
UCA708	Operational Research	DE	2	1	-	3
UCA709	Mobile Computing	DE	3	1	-	
UCA710	Object Oriented Analysis & Design	DE	3	1	-	
UCA711	Grid Computing	DE	3	1	-	
UCA721	Advanced DBMS Lab	DE	-	-	2	1
UCA722	Programming with ASP.Net Lab	DE	-	-	2	1
UCA723	Distributed Operating System Lab	DE	-	-	2	1
UCA724	Operational Research Lab	DE	-	-	2	1
	Open Ele	ective				
	OPEN ELECTIVE- 7	OE	3	-	-	3
	Value A	dded		I		
BCS 701	Communication Skills - V	VA	1	-	-	1
BSS 701	Behavioural Science - VII	VA	1	-	-	1
	Foreign Language – VII	VA	2	-	-	2
FLF 701	French					
FLG 701	German					
FLS 701	Spanish					
FLC 701	Chinese Total					34
	1 गर्वा					34

Note:- CC - Core Course, VA - Value Added Course, OE - Open Elective, DE - Domain Elective, FW - Field Work

SEMESTER VIII

Code	Course	Category	L	Т	P/FW	Credit Units
UCA801	Advanced DBMS	CC	3	-	-	3
UCA802	Software Testing & Quality Assurance	CC	3		-	3
UCA821	Advanced DBMS Lab	CC	-	-	2	1
UCA822	Software Testing & Quality Assurance Lab	CC	-		2	1
UCA 860	Project	CC	-	-	-	15
	Domain Elective-V: Choose any of	e fol	lowing course	S		
UCA803	Visual Programming using VC++	DE	2	1	-	3
UCA804	Object-Oriented Software Engineering	DE	2	1	-	4
UCA823	Visual Programming using VC++ Lab	DE	-	-	2	1
	Value A	dded				
BCS 801	Communication Skills – VIII	VA	1	-	-	1
BSS 801	Behavioural Science – VIII	VA	1	-	-	1
Foreign Language – VIII FLF 801 French FLG 801 German FLS 801 Spanish FLC 801 Chinese		VA	2	-	-	2
	Total	<u>I</u>				34

Note:- CC - Core Course, VA - Value Added Course, OE - Open Elective, DE - Domain Elective, FW - Field Work

SUMMER PROJECT - 8 - 10 WEEKS

SEMESTER IX

Code	Course	Category	L	Т	P/FW	Credit Units
UCA 901	Compiler Design	CC	3	-	-	3
UCA 902	Design of Embedded Systems	CC	3	1		4
UCA 903	Software Project Planning & Management	CC	3		-	3
UCA 921	Compiler Design Lab	CC	-	-	2	1
UCA 922	Software Project Planning & Management Lab	CC	ı	-	2	1
UCA 950	Summer Project (Evaluation)	CC	ı	-	-	10
Domain	Elective-V : Choose any two from the follow	wing course	es			
UCA 904	Advanced Data Communication Networks	DE	3	-	-	3
UCA 905	J2EE	DE	3	-	-	3
UCA 906	Website Design Methodology	DE	3	-	-	3
UCA 907	VLSI Design	DE	3	-	-	3
UCA 908	Real Time Operating System	DE	3	1	-	4
UCA 909	Neural Network & Fuzzy Logic	DE	3	1	-	4
UCA 923	Advanced Data Communication Networks Lab	DE	-	-	2	1
UCA 924	J2EE Lab	DE	-	-	2	1
UCA 926	VLSI Design Lab	DE	-	-	2	1
	Value A	dded				
BCS 901	Communication Skills – IX	VA	1	-	-	1
BSS 901	Behavioural Science – IX	VA	1	-	-	1
	Foreign Language – IX	VA	2	-	-	2
FLF 901	French					
FLG 901 FLS 901	German					
FLS 901 FLC 901	Spanish Chinese					
110 701	Total	1				32

Note:- CC - Core Course, VA - Value Added Course, OE - Open Elective, DE - Domain Elective, FW - Field Work

SEMESTER X

Code	Course	Category	L	Т	P/FW	Credit Units
UCA001	Dissertation	CC	-	-	-	30
	Total					30

Note:- CC - Core Course, VA - Value Added Course, OE - Open Elective, DE - Domain Elective, FW - Field Work

APPLIED MATHEMATICS - I

Course Code: UCA 101 Credit Units: 04

Course Objective:

The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. Here our intention is to make the students acquainted with the concept of basic topics from Mathematics, which they need to pursue their Engineering degree in different disciplines.

Course Contents:

Module I: Differential Calculus

Successive differentiation, Leibnitz's theorem (without proof), Mean value theorem, Taylor's theorem (proof), Remainder terms, Asymptote & Curvature, Partial derivatives, Chain rule, Differentiation of Implicit functions, Exact differentials, Tangents and Normals, Maxima, Approximations, Differentiation under integral sign, Jacobians and transformations of coordinates.

Module II: Integral Calculus

Fundamental theorems, Reduction formulae, Properties of definite integrals, Applications to length, area, volume, surface of revolution, improper integrals, Multiple Integrals-Double integrals, Applications to areas, volumes.

Module III: Ordinary Differential Equations

Formation of ODEs, Definition of order, degree & solutions, ODE of first order: Method of separation of variables, homogeneous and non homogeneous equations, Exactness & integrating factors, Linear equations & Bernoulli equations, General linear ODE of nth order, Solution of homogeneous equations, Operator method, Method of undetermined coefficients, Solution of simple simultaneous ODE.

Module IV: Vector Calculus

Scalar and Vector Field, Derivative of a Vector, Gradient, Directional Derivative, Divergence and Curl and their Physical Significance, Arc Length, Tangent, Directional Derivative, Evaluation of Line Integral, Green's Theorem in Plane (without proof), Representation of Surfaces, Tangent Plane and Surface Normal, Surface Integral, Stoke's Theorem (without proof), Gauss Divergence Theorem (without proof).

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Differential Calculus by Shanti Narain
- Integral Calculus by Shanti Narain

References:

- Differential Equation by A.R. Forsyth
- Higher Engineering Mathematics by H.K. Dass

APPLIED PHYSICS - I - FIELDS AND WAVES

Course Code: UCA 102 Credit Units: 03

Course Objective:

Aim of this course is to introduce the students to fundamentals of graduate level physics, which form the basis of all applied science and engineering

Course Contents:

Module I: Oscillations & Waves

Oscillations: Introduction to S.H.M. Damped Oscillations: Differential Equation and its solution, logarithmic decrement, Quality Factor, Different conditions of damping of harmonic oscillations. Forced oscillations: Amplitude and Frequency Response, Resonance, Sharpness of Resonance

Plane Progressive Waves: Differential Equation and Solution, Superposition of Progressive Waves stationary waves.

Ultrasonics: Generation and application of ultrasonicwaves.

Module II: Wave Nature of Light

Interference: Coherent Sources, Conditions of interference, Interference due to division of wavefront, Fresnels biprism Interference due to division of amplitude, Newton's rings, Interference due to thin films, .

Diffraction: Fresnel and Fraunhofer diffraction, Fraunhofer diffraction at a single slit, double slit, N Slits, Transmission grating, Rayleigh criterion and Resolving power of grating.

Polarization: Birefringence, Nicol prism, Production and analysis of plane, circularly and elliptically polarized light, Half and quarter wave plates, Optical rotation, Polarimeter.

Module III: Electromagnetics

Scalar and vector fields, gradient of a scalar field, physical significance of gradient, equipotential surface. Line, surface and volume integrals, Divergence and curl of vector field and mathematical analysis physical significance, Electric flux, Gauss' law, Proof and Applications, Gauss divergence and Stokes theorems.

Differential form of Gauss' Law, Amperes' Law, Displacement current, Faradays Law, Maxwell equations in free space & isotropic media (Integral form & differential form), EM wave propagation in free space, Poynting vector.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

- Waves & oscillation, A. P. French
- Physics of waves, W. C. Elmore & M. A. Heald
- Introduction to Electrodynamics, D. J. Griffith
- Electrodynamics, Gupta, Kumar & Singh
- Optics, A. K. Ghatak
- Engineering Physics, Satya Prakash

ENGINEERING MECHANICS

Course Code: UCA 103 Credit Units: 03

Course Objective:

Objective of this course is to provide fundamental knowledge of force system and its effect on the behaviour of the bodies that may be in dynamic or in static state. It includes the equilibrium of different structures like beams, frames, truss etc and the force transfer mechanism in the different components of a body under given loading condition.

Course Contents:

Module I: Force system & Structure

Free body diagram, Equilibrium equations and applications. Plane truss, perfect and imperfect truss, assumption in the truss analysis, analysis of perfect plane trusses by the method of joints, method of section.

Module II: Friction

Static and Kinetic friction, laws of dry friction, co-efficient of friction, angle of friction, angle of repose, cone of friction, friction lock, efficiency of screw jack, transmission of power through belt

Module III: Distributed Force

Determination of center of gravity, center of mass and centroid by direct integration and by the method of composite bodies, mass moment of inertia and area moment of inertia by direct integration and composite bodies method, radius of gyration, parallel axis theorem, Pappus theorems and its application, polar moment of inertia.

Module IV: Work -Energy

Work energy equation, conservation of energy, Virtual work, impulse, momentum conservation, impact of bodies, co-efficient of restitution, loss of energy during impact, D'alembert principle

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

- S.S. Bhavikatti, Engineering Mechanics, New Age International Ltd
- Timoshenko, Engineering Mechanics, McGraw Hill
- R. S. Khurmi, Engineering Mechanics, S. Chand Publication
- H. Shames & G. K. M. Rao, Engineering Mechanics, Pearson Education, 2006

INTRODUCTION TO COMPUTERS AND PROGRAMMING IN C

Course Code: UCA 104 Credit Units: 03

Course Objective:

The objective of this course module is to acquaint the students with the basics of computers system, its components, data representation inside computer and to get them familiar with various important features of procedure oriented programming language i.e. C.

Course Contents:

Module I: Introduction

Introduction to computer, history, von-Neumann architecture, memory system (hierarchy, characteristics and types), H/W concepts (I/O Devices), S/W concepts (System S/W & Application S/W, utilities). Data Representation: Number systems, character representation codes, Binary, octal, hexadecimal and their interconversions. Binary arithmetic, floating point arithmetic, signed and unsigned numbers, Memory storage unit.

Module II: Programming in C

History of C, Introduction of C, Basic structure of C program, Concept of variables, constants and data types in C, Operators and expressions: Introduction, arithmetic, relational, Logical, Assignment, Increment and decrement operator, Conditional, bitwise operators, Expressions, Operator precedence and associativity. Managing Input and output Operation, formatting I/O.

Module III: Fundamental Features in C

C Statements, conditional executing using if, else, nesting of if, switch and break Concepts of loops, example of loops in C using for, while and do-while, continue and break. Storage types (automatic, register etc.), predefined processor, Command Line Argument.

Module IV: Arrays and Functions

One dimensional arrays and example of iterative programs using arrays, 2-D arrays Use in matrix computations. Concept of Sub-programming, functions Example of user defined functions. Function prototype, Return values and their types, calling function, function argument, function with variable number of argument, recursion.

Module V: Advanced features in C

Pointers, relationship between arrays and pointers Argument passing using pointers, Array of pointers. Passing arrays as arguments.

Strings and C string library.

Structure and Union. Defining C structures, Giving values to members, Array of structure, Nested structure, passing strings as arguments.

File Handling.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- "ANSI C" by E Balagurusamy
- Yashwant Kanetkar, "Let us C", BPB Publications, 2nd Edition, 2001.
- Herbert Schildt, "C: The complete reference", Osbourne Mcgraw Hill, 4th Edition, 2002.
- V. Raja Raman, "Computer Programming in C", Prentice Hall of India, 1995.

References:

- Kernighan & Ritchie, "C Programming Language", The (Ansi C Version), PHI, 2nd Edition.
- J. B Dixit, "Fundamentals of Computers and Programming in 'C'.
- P.K. Sinha and Priti Sinha, "Computer Fundamentals", BPB publication.

ELECTRICAL SCIENCE

Course Code: UCA 105 Credit Units: 03

Course Objective:

The objective of the course is to provide a brief knowledge of Electrical Engineering to students of all disciplines. This Course includes some theorems related to electrical, some law's related to flow of current, voltages, basic knowledge of Transformer, basic knowledge of electromagnetism, basic knowledge of electrical network.

Course Contents:

Module I: Basic Electrical Quantities

Basic Electrical definitions-Energy, Power, Charge, Current, Voltage, Electric Field Strength, Magnetic Flux Density, etc., Resistance, Inductance and Capacitance. Ideal Source, Independent Source and Controlled Source

Module II: Network Analysis Techniques & Theorems

Circuit Principles: Ohm's Law, Kirchoff's Current Law, Kirchoff's Voltage Law Network Reduction: Star—Delta Transformation, Source Transformation, Nodal Analysis, Loop analysis. Superposition theorem, Theorem, Norton's theorem and Reciprocity theorem.

Module III: Alternating Current Circuits

Peak, Average and RMS values for alternating currents, Power calculation:

reactive power, active power, Complex power, power factor, impedance, reactance, conductance, susceptance Resonance: series Resonance, parallel resonance, basic definition of Q factor & Band-width.

Module IV: Transformers

Basic Transformer Operation principle, Construction, Voltage relations, current relations, Linear circuit models, open circuit test, short circuit test, Transformer Efficiency.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

- R.J. Smith, R.C. Dorf: Circuits, devices and Systems
- B.L. Thareja: Electrical Technology: Part -1 & 2
- V. Deltoro: Electrical Engineering fundamentals
- Schaum's Series: Electrical Circuits

ENGINEERING GRAPHICS

Course Code: UCA 106 Credit Units: 02

Course Objective:

This course will provide students concepts on the drawings of different curves like straight line, parabola, ellipse etc. After completion of this course, students will be able to draw different figures manually and will be capable of using various instruments involved in drawings.

Course Contents:

Module I: General

Importance, Significance and scope of engineering drawing, Lettering, Dimensioning, Scales, Sense of proportioning, Different types of projections, Orthographic Projection, B.I.S. Specifications.

Module II: Projections of Point and Lines

Introduction of planes of projection, Reference and auxiliary planes, projections of points and Lines in different quadrants, traces, inclinations, and true lengths of the lines, projections on Auxiliary planes, shortest distance, intersecting and non-intersecting lines.

Module III: Planes other than the Reference Planes

Introduction of other planes (perpendicular and oblique), their traces, inclinations etc., Projections of points and lines lying in the planes, conversion of oblique plane into auxiliary Plane and solution of related problems.

Module IV: Projections of Plane Figures

Different cases of plane figures (of different shapes) making different angles with one or both reference planes and lines lying in the plane figures making different given angles (with one of both reference planes). Obtaining true shape of the plane figure by projection.

Module V: Projection of Solids

Simple cases when solid is placed in different positions, Axis faces and lines lying in the faces of the solid making given angles.

Module VI: Development of Surface

Development of simple objects with and without sectioning. Isometric Projection

Examination Scheme:

]	IA LR V		EE		
A	PR		V	PR	V	
5	10	10	5	35	35	

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

- M.B. Shah & B.C. Rana, Engineering Drawing, Pearson Education, 2007
- PS Gill, Engineering Drawing, Kataria Publication
- ND Bhatt, Engineering Drawing, Charotar publications
- N Sidheshwar, Engineering Drawing, Tata McGraw Hill
- CL Tanta, Mechanical Drawing, "Dhanpat Rai"

ENGINEERING GRAPHICS LAB

Course Code: UCA 121 Credit Units: 01

Course Objective:

This course will provide students concepts on the drawings of different curves like straight line, parabola, ellipse etc. After completion of this course, students will be able to draw different figures manually and will be capable of using various instruments involved in drawings.

Course Contents:

Module I: General

Importance, Significance and scope of engineering drawing, Lettering, Dimensioning, Scales, Sense of proportioning, Different types of projections, Orthographic Projection, B.I.S. Specifications.

Module II: Projections of Point and Lines

Introduction of planes of projection, Reference and auxiliary planes, projections of points and Lines in different quadrants, traces, inclinations, and true lengths of the lines, projections on Auxiliary planes, shortest distance, intersecting and non-intersecting lines.

Module III: Planes other than the Reference Planes

Introduction of other planes (perpendicular and oblique), their traces, inclinations etc., Projections of points and lines lying in the planes, conversion of oblique plane into auxiliary Plane and solution of related problems.

Module IV: Projections of Plane Figures

Different cases of plane figures (of different shapes) making different angles with one or both reference planes and lines lying in the plane figures making different given angles (with one of both reference planes). Obtaining true shape of the plane figure by projection.

Module V: Projection of Solids

Simple cases when solid is placed in different positions, Axis faces and lines lying in the faces of the solid making given angles.

Module VI: Development of Surface

Development of simple objects with and without sectioning. Isometric Projection

Examination Scheme:

]	IA LR V		EE		
A	PR		V	PR	V	
5	10	10	5	35	35	

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

- M.B. Shah & B.C. Rana, Engineering Drawing, Pearson Education, 2007
- PS Gill, Engineering Drawing, Kataria Publication
- ND Bhatt, Engineering Drawing, Charotar publications
- N Sidheshwar, Engineering Drawing, Tata McGraw Hill
- CL Tanta, Mechanical Drawing, "Dhanpat Rai"

APPLIED PHYSICS - I LAB

Course Code: UCA 122 Credit Units: 01

List of Experiments:

- 1. To determine the wavelength of sodium light by Newton's rings method.
- 2. To determine the dispersive power of the material of prism with the help of a spectrometer.
- 3. To determine the specific rotation of sugar by Bi-quartz or Laurent half shade polarimeter.
- 4. To determine the speed of ultrasonic waves in liquid by diffraction method.
- 5. To determine the width of a narrow slit using diffraction phenomena.
- 6. To determine the temperature coefficient of platinum wire, using a platinum resistance thermometer and a Callender & Griffth's bridge.
- 7. To determine the value of specific charge (ratio of e/m) of an electron by Thomson method.
- 8. To determine the internal resistance of Leclanche cell with the help of Potentiometer.
- 9. To determine the resistance per unit length of a Carey Foster's bridge wire and also to find out the specific resistance of a given wire.
- 10. To plot graph showing the variation of magnetic field with distance along the aixs of a circular coil carrying current, and hence estimate the radius of the coil.
- 11. To determine the value of acceleration due to gravity ('g') in the laboratory using bar pendulum.
- 12. To determine the moment of inertia of a flywheel about its own axis of rotation.
- 13. To determine the density of material of the given wire with the help of sonometer.

Examination Scheme:

]	ÍA.		l H	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

ENGINEERING MECHANICS LAB

Course Code: UCA 123 Credit Units: 01

Engineering Mechanics:

- 1. To verify the law of Force Polygon
- 2. To verify the law of Moments using Parallel Force apparatus. (Simply supported type)
- 3. To determine the co-efficient of friction between wood and various surface (like
- 4. Leather, Wood, Aluminum) on an inclined plane.
- 5. To find the forces in the members of Jib Crane.
- 6. To determine the mechanical advantage, Velocity ratio and efficiency of a screw jack.
- 7. To determine the mechanical advantage, Velocity ratio and Mechanical efficiency of the
- 8. Wheel and Axle
- 9. To determine the MA, VR, η of Worm Wheel (2-start)
- 10. Verification of force transmitted by members of given truss.
- 11. To verify the law of moments using Bell crank lever
- 12. To find CG and moment of Inertia of an irregular body using Computation method

Examination Scheme:

]	IA		H.	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

PROGRAMMING IN C LAB

Course Code: UCA 124 Credit Units: 01

Software Required: Turbo C

Course Contents:

• C program involving problems like finding the nth value of cosine series, Fibonacci series. Etc.

- C programs including user defined function calls
- C programs involving pointers, and solving various problems with the help of those.
- File handling

Examination Scheme:

]	ÍA.		H*	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

ELECTRICAL SCIENCE LAB

Course Code: **UCA 125** Credit Units: 01

List of Experiments:

- 1. To verify KVL & KCL in the given network.
- 2. To verify Superposition Theorem.
- 3. To verify Maximum Power Transfer Theorem.

- To verify Naximali Tower Thanser Theorem.
 To verify Reciprocity Theorem.
 To determine and verify RTh, VTh, RN, IN in a given network.
 To perform open circuit & short circuit test on a single-phase transformer.
- 7. To study transient response of a given RLC Circuit.
- 8. To perform regulation, ratio & polarity test on a single-phase transformer.
 9. To measure power & power factor in a three phase circuit by two wattmeter method.
- 10. To measure power & power factor in a three phase load using three ammeter & three voltmeter method.

Examination Scheme:

]	IA		H,	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

ENGLISH

Course Code: BCS 101 Credit Units: 01

Course Objective:

The course is intended to give a foundation of English Language. The literary texts are indented to help students to inculcate creative & aesthetic sensitivity and critical faculty through comprehension, appreciation and analysis of the prescribed literary texts. It will also help them to respond form different perspectives.

Course Contents:

Module I: Vocabulary

Use of Dictionary

Use of Words: Diminutives, Homonyms & Homophones

Module II: Essentials of Grammar - I

Articles Parts of Speech Tenses

Module III: Essentials of Grammar - II

Sentence Structure, Subject -Verb agreement

Punctuation

Module IV: Communication

The process and importance, Principles & benefits of Effective Communication

Module V: Spoken English Communication

Speech Drills, Pronunciation and accent, Stress and Intonation

Module VI: Communication Skills-I

Developing listening skills, Developing speaking skills

Module VII: Communication Skills-II

Developing Reading Skills Developing writing Skills

Module VIII: Written English communication

Progression of Thought/ideas, Structure of Paragraph, Structure of Essays

Module IX: Short Stories

Of Studies, by Francis Bacon Dream Children, by Charles Lamb The Necklace, by Guy de Maupassant A Shadow, by R.K.Narayan Glory at Twilight, Bhabani Bhattacharya

Module X: Poems

All the Worlds a Stage
To Autumn

O! Captain, My Captain.

Where the Mind is Without Fear
Psalm of Life

Shakespeare

Keats

Walt Whitman

Rabindranath Tagore

H.W. Longfellow

Examination Scheme:

Components	A	CT	HA	EE
Weightage (%)	05	15	10	70

Text & References:

- Madhulika Jha, Echoes, Orient Long Man
- Ramon & Prakash, Business Communication, Oxford.
- Sydney Greenbaum Oxford English Grammar, Oxford.
- Successful Communications, Malra Treece (Allyn and Bacon)
- Effective Technical Communication, M. Ashraf Rizvi.

* 30 hrs Programme to be continued for Full year

BEHAVIOURAL SCIENCE - I (UNDERSTANDING SELF FOR EFFECTIVENESS)

Course Code: BSS 101 Credit Units: 01

Course Objective:

This course aims at imparting:

Understanding self & process of self exploration

Learning strategies for development of a healthy self esteem

Importance of attitudes and its effective on personality

Building Emotional Competence

Course Contents:

Module I: Self: Core Competency

Understanding of Self

Components of Self – Self identity

Self concept

Self confidence

Self image

Module II: Techniques of Self Awareness

Exploration through Johari Window

Mapping the key characteristics of self

Framing a charter for self

Stages – self awareness, self acceptance and self realization

Module III: Self Esteem & Effectiveness

Meaning and Importance

Components of self esteem

High and low self esteem

Measuring your self esteem

Module IV: Building Positive Attitude

Meaning and nature of attitude

Components and Types of attitude

Importance and relevance of attitude

Module V: Building Emotional Competence

Emotional Intelligence - Meaning, components, Importance and Relevance

Positive and Negative emotions

Healthy and Unhealthy expression of emotions

Module VI: End-of-Semester Appraisal

Viva based on personal journal

Assessment of Behavioural change as a result of training

Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term	VIVA	Journal for	
			Test (CT)		Success (JOS)	
Weightage (%)	20	05	20	30	25	

- Organizational Behaviour, Davis, K.
- Hoover, Judhith D. Effective Small Group and Team Communication, 2002, Harcourt College Publishers
- Dick, Mc Cann & Margerison, Charles: Team Management, 1992 Edition, viva books
- Bates, A. P. and Julian, J.: Sociology Understanding Social Behaviour
- Dressler, David and Cans, Donald: The Study of Human Interaction
- Lapiere, Richard. T Social Change
- Lindzey, G. and Borgatta, E: Sociometric Measurement in the Handbook of Social Psychology, Addison Welsley, US.
- Rose, G.: Oxford Textbook of Public Health, Vol.4, 1985.
- LaFasto and Larson: When Teams Work Best, 2001, Response Books (Sage), New Delhi
- J William Pfeiffer (ed.) Theories and Models in Applied Behavioural Science, Vol 2, Group (1996); Pfeiffer & Company
- Smither Robert D.; The Psychology of Work and Human Performance, 1994, Harper Collins College Publishers

FRENCH - I

Course Code: FLF 101 Credit Units: 02

Course Objective:

To familiarize the students with the French language

- with the phonetic system
- with the syntax
- with the manners
- with the cultural aspects

Course Contents:

Module A: pp. 01 to 37: Unités 1, 2, Unité 3 Object if 1, 2 Only grammar of Unité 3: object if 3, 4 and 5

Contenu lexical : Unité 1 : Découvrir la langue française : (oral et écrit)

- 1. se présenter, présenter quelqu'un, faire la connaissance des autres, formules de politesse, rencontres
- 2. dire/interroger si on comprend
- 3. Nommer les choses

Unité 2: Faire connaissance

- 1. donner/demander des informations sur une personne, premiers contacts, exprimer ses goûts et ses préférences
- 2. Parler de soi: parler du travail, de ses activités, de son pays, de sa ville.

Unité 3: Organiser son temps

1. dire la date et l'heure

Contenu grammatical:

- 1. organisation générale de la grammaire
- 2. article indéfini, défini, contracté
- 3. nom, adjectif, masculin, féminin, singulier et pluriel
- 4. négation avec « de », "moi aussi", "moi non plus"
- 5. interrogation : Inversion, est-ce que, qui, que, quoi, qu'est-ce que, où, quand, comment, quel(s), quelle(s)
 Interro-négatif : réponses : oui, si, non
- 6. pronom tonique/disjoint- pour insister après une préposition
- 7. futur proche

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 1

GERMAN - I

Course Code: FLG 101 Credit Units: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Course Contents:

Module I: Introduction

Self introduction: heissen, kommen, wohnwn, lernen, arbeiten, trinken, etc.

All personal pronouns in relation to the verbs taught so far.

Greetings: Guten Morgen!, Guten Tag!, Guten Abend!, Gute Nacht!, Danke sehr!, Danke!, Vielen Dank!, (es tut mir Leid!),

Hallo, wie geht's?: Danke gut!, sehr gut!, prima!, ausgezeichnet!,

Es geht!, nicht so gut!, so la la!, miserabel!

Module II: Interviewspiel

To assimilate the vocabulary learnt so far and to apply the words and phrases in short dialogues in an interview – game for self introduction.

Module III: Phonetics

Sound system of the language with special stress on Dipthongs

Module IV: Countries, nationalities and their languages

To make the students acquainted with the most widely used country names, their nationalitie and the language spoken in that country.

Module V: Articles

The definite and indefinite articles in masculine, feminine and neuter gender. All Vegetables, Fruits, Animals, Furniture, Eatables, modes of Transport

Module VI: Professions

To acquaint the students with professions in both the genders with the help of the verb "sein".

Module VII: Pronouns

Simple possessive pronouns, the use of my, your, etc.

The family members, family Tree with the help of the verb "to have"

Module VIII: Colours

All the color and color related vocabulary – colored, colorful, colorless, pale, light, dark, etc.

Module IX: Numbers and calculations - verb "kosten"

The counting, plural structures and simple calculation like addition, subtraction, multiplication and division to test the knowledge of numbers.

"Wie viel kostet das?"

Module X: Revision list of Question pronouns

W – Questions like who, what, where, when, which, how, how many, how much, etc.

Examination Scheme:

Components	CT1	CT2	C	I	\mathbf{V}	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - I

Course Code: FLS 101 Credit Units: 02

Course Objective:

To enable students acquire the relevance of the Spanish language in today's global context, how to greet each other. How to present / introduce each other using basic verbs and vocabulary

Course Contents:

Module I

A brief history of Spain, Latin America, the language, the culture...and the relevance of Spanish language in today's global context.

Introduction to alphabets

Module II

Introduction to 'Saludos' (How to greet each other. How to present / introduce each other).

Goodbyes (despedidas)

The verb *llamarse* and practice of it.

Module III

Concept of Gender and Number

Months of the years, days of the week, seasons. Introduction to numbers 1-100, Colors, Revision of numbers and introduction to ordinal numbers.

Module IV

Introduction to SER and ESTAR (both of which mean To Be). Revision of 'Saludos' and 'Llamarse'. Some adjectives, nationalities, professions, physical/geographical location, the fact that spanish adjectives have to agree with gender and number of their nouns. Exercises highlighting usage of Ser and Estar.

Module V

Time, demonstrative pronoun (Este/esta, Aquel/aquella etc)

Module VI

Introduction to some key AR /ER/IR ending regular verbs.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Español, En Directo I A
- Español Sin Fronteras

CHINESE – I

Course Code: FLC 101 Credit Units: 02

Course Objective:

There are many dialects spoken in China, but the language which will help you through wherever you go is Mandarin, or Putonghua, as it is called in Chinese. The most widely spoken forms of Chinese are Mandarin, Cantonese, Gan, Hakka, Min, Wu and Xiang. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Show pictures, dialogue and retell.

Getting to know each other.

Practicing chart with Initials and Finals. (CHART – The Chinese Phonetic Alphabet Called "Hanyu Pinyin" in Mandarin Chinese.)

Practicing of Tones as it is a tonal language.

Changes in 3rd tone and Neutral Tone.

Module II

Greetings

Let me Introduce

The modal particle "ne".

Use of Please 'qing" – sit, have tea etc.

A brief self introduction – Ni hao ma? Zaijian!

Use of "bu" negative.

Module III

Attributives showing possession

How is your Health? Thank you

Where are you from?

A few Professions like – Engineer, Businessman, Doctor, Teacher, Worker.

Are you busy with your work?

May I know your name?

Module IV

Use of "How many" – People in your family?

Use of "zhe" and "na".

Use of interrogative particle "shenme", "shui", "ma" and "nar".

How to make interrogative sentences ending with "ma".

Structural particle "de".

Use of "Nin" when and where to use and with whom. Use of guixing.

Use of verb "zuo" and how to make sentences with it.

Module V

Family structure and Relations.

Use of "you" - "mei you".

Measure words

Days and Weekdays.

Numbers.

Maps, different languages and Countries.

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

[&]quot;Elementary Chinese Reader Part I" Lesson 1-10

APPLIED MATHEMATICS - II

Course Code: UCA 201 Credit Units: 04

Course Objective:

The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. Here our intention is to make the students acquainted with the concept of basic topics from Mathematics, which they need to pursue their Engineering degree in different disciplines.

Course Contents:

Module I: Linear Algebra

Hermitian and Skew Hermitian Matrix, Unitary Matrix, Orthogonal Matrix, Elementary Row Transformation, Reduction of a Matrix to Row Echelon Form, Rank of a Matrix, Consistency of Linear Simultaneous Equations, Gauss Elimination Method, Gauss-Jordan Method, Eigen Values and Eigen Vectors of a Matrix, Caley-Hamilton Theorem, Diagonalization of a Matrix, Vector Space, Linear Independence and Dependence of Vectors, Linear Transformations.

Module II: Infinite Series

Definition of Sequence, Bounded Sequence, Limit of a Sequence, Series, Finite and Infinite Series, Convergence and Divergence of Infinite series, Cauchy's Principle of Convergence, Positive Term Infinite Series, Comparison test, D'Alembert's Ratio test. Raabe's Test, Cauchy's nth root Test. Logarithmic Test, Alternating Series, Leibnitz's Test, Absolute and conditional convergence, Uniform Convergence, Power Series and its Interval of Convergence.

Module III: Complex Analysis

De Moivre's Theorem and Roots of Complex Numbers, Logarithmic Functions, Circular, Hyperbolic Functions and their Inverses.

Functions of a Complex Variables, Limits, Continuity and Derivatives, Analytic Function, Cauchy-Riemann Equations (without proof), Harmonic Function, Harmonic Conjugates, Conformal Mapping, Bilinear Transformations, Complex Line Integral, Cauchy Integral Theorem, Cauchy Integral Formula, Derivative of Analytic Function, Power Series, Taylor Series, Laurent Series, Zeroes and Singularities, Residues, Residue

Theorem, Evaluation of Real Integrals of the Form and
$$\int_{-\infty}^{\infty} \frac{f(x)}{F(x)} dx$$
.

Module IV: Statistics and Probability

Moments, Skewness, Kurtosis, Random Variables and Probability Distribution, Mean and Variance of a Probability Distribution, Binomial Distribution, Poisson Distribution and Normal Distribution.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	15	20	20	20	5

C – Project + Presentation

- Engineering Mathematics by Erwin Kreyszig.
- Engineering Mathematics by R.K. Jain and S.R.K. Iyengar.
- Higher Engineering Mathematics by H.K. Dass.
- Engineering Mathematics by B.S. Grewal.
- Differential Calculus by Shanti Narain.
- Integral Calculus by Shanti Narain.
- Linear Algebra- Schaum Outline Series.

I – Interaction/Conversation Practice

APPLIED PHYSICS - II - MODERN PHYSICS

Course Code: UCA 202 Credit Units: 03

Course Objective:

Aim of this course is to introduce the students to fundamentals of graduate level physics which form the basis of all applied science and engineering

Course Contents:

Module I: Special Theory of Relativity

Michelson-Morley experiment, Importance of negative result, Inertial & non-inertial frames of reference, Einstein's postulates of Special theory of Relativity, Space-time coordinate system, Relativistic Space Time transformation (Lorentz transformation equation), Transformation of velocity, Addition of velocities, Length contraction and Time dilation, Mass-energy equivalence (Einstein's energy mass relation) & Derivation of Variation of mass with velocity,

Module II: Wave Mechanics

Wave particle duality, De-Broglie matter waves, phase and group velocity, Heisenberg uncertainty principle, wave function and its physical interpretation, Operators, expectation values. Time dependent & time independent Schrödinger wave equation for free & bound states, square well potential (rigid wall), Step potential.

Module III: Atomic Physics

Vector atom model, LS and j-j coupling, Zeceman effect (normal & anomalous), Paschen-Bach effect, X-ray spectra and energy level diagram, Moseleys Law, Lasers – Einstein coefficients, conditions for light amplification, population inversion, optical pumping, three level and four level lasers, He-Ne and Ruby laser, Properties and applications of lasers.

Module IV: Solid State Physics

Sommerfield's free electron theory of metals, Fermi energy, Introduction to periodic potential & Kronig-Penny model (Qualitative) Band Theory of Solids, Semi-conductors: Intrinsics and Extrinsic Semiconductors, photoconductivity and photovotaics, Basic aspects of Superconductivity, Meissner effect.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

- Concept of Modern Physics, A. Beiser
- Applied Physics II, Agarawal & Goel
- Solid State Physics, S. O. Pallai
- Physics of Atom, Wehr & Richards

APPLIED CHEMISTRY

Course Code: UCA 203 Credit Units: 03

Course Objective:

Four basic sciences, Physics, Chemistry, Mathematics and Biology are the building blocks in engineering and technology. Chemistry is essential to develop analytical capabilities of students, so that they can characterize, transform and use materials in engineering and apply knowledge in their field. All engineering fields have unique bonds with chemistry whether it is Aerospace, Mechanical, Environmental and other fields the makeup of substances is always a key factor, which must be known. For electronics and computer science engineering, apart from the material, computer modeling and simulation knowledge can be inherited from the molecule designing. The upcoming field of technology like Nanotechnology and Biotechnology depends fully on the knowledge of basic chemistry. With this versatile need in view, course has been designed in such a way so that the student should get an overview of the whole subject.

Course Contents:

Module I: Water Technology

Introduction and specifications of water,

Hardness and its determination (EDTA method only),

Alkalinity,

Boiler feed water, boiler problems – scale, sludge, priming & foaming: causes & prevention, Boiler problems – caustic embrittlement & corrosion: causes & prevention,

Carbonate & phosphate conditioning, colloidal conditioning & calgon treatment

Water softening processes: Lime – soda process, Ion exchange method,

Water for domestic use.

Module II: Fuels

Classification, calorific value of fuel, (gross and net),

Determination of calorific value of fuels, bomb calorimeter,

Solid fuels - Proximate and ultimate analysis,

Octane & Cetane No. and its significance.

Numericals on combustion

Module III: Instrumental Methods of analysis

Introduction; Principles of spectroscopy; Laws of absorbance

IR: Principle, Instrumentation, Application UV: Principle, Instrumentation, Application NMR: Principle, Instrumentation, Application

Module III: Lubricants

Introduction; Mechanism of Lubrication;

Types of Lubricants; Chemical structure related to Lubrication;

Properties of lubricants; Viscosity and Viscosity Index; Iodine Value; Aniline Point; Emulsion number; Flash

Point; Fire Point; Drop Point; Cloud Point; Pour Point.

Selection of Lubricants.

Module VI: Corrosion

Introduction, Mechanism of dry and wet corrosion,

Types of corrosion-Galvanic, Concentration cell, soil, pitting, intergranular, waterline. Passivity.

Factors influencing corrosion.

Corrosion control.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Engineering Chemistry- Jain and Jain
- Engineering Chemistry- Sunita Rattan
- Engineering Chemistry-Shashi Chawla

References:

- Engineering Chemistry –Dara and Dara
- Spectroscopy- Y.R Sharma
- Corrosion Engineering Fontenna and Greene

DATA STRUCTURES USING C

Course Code: UCA 204 Credit Units: 03

Course Objective:

Data structure deals with organizing large amount of data in order to reduce space complexity and time requirement. This course gives knowledge of algorithms, different types of data structures and the estimation space and time complexity.

Course Contents:

Module I: Introduction to Data structures

Data structures: Definition, Types. Algorithm design, Complexity, Time-Space Trade offs. Use of pointers in data structures. Array Definition and Analysis, Representation of Linear Arrays in Memory, Traversing of Linear Arrays, Insertion And Deletion, Single Dimensional Arrays, Two Dimensional Arrays, Multidimensional Arrays, Function Associated with Arrays, Character String in C, Character String Operations, Arrays as parameters, Implementing One Dimensional Array, Sparse matrix.

Module II: Introduction to Stacks and queue

Stack: Definition, Array representation of stacks, Operations Associated with Stacks- Push & Pop, Polish expressions, Conversion of infix to postfix, infix to prefix (and vice versa), Application of stacks recursion, polish expression and their compilation, conversion of infix expression to prefix and postfix expression, Tower of Hanoi problem.

Queue: Definition, Representation of Queues, Operations of queues- QInsert, QDelete, Priority Queues, Circular Queue, Deque.

Module III: Dynamic Data Structure

Linked list: Introduction to Singly linked lists: Representation of linked lists in memory, Traversing, Searching, Insertion into, Deletion from linked list, doubly linked list, circular linked list, generalized list. Applications of Linked List-Polynomial representation using linked list and basic operation. Stack and queue implementation using linked list.

Module IV: Trees and Graphs

Trees: Basic Terminology, Binary Trees and their representation, expression evaluation, Complete Binary trees, extended binary trees, Traversing binary trees, Searching, Insertion and Deletion in binary search trees, General trees, AVL trees, Threaded trees, B trees.

Graphs: Terminology and Representations, Graphs & Multigraphs, Directed Graphs, Sequential representation of graphs, Adjacency matrices, Transversal Connected Component and Spanning trees.

Module V: Sorting and Searching and file structures

Sorting: Insertion Sort, Bubble sort, Selection sort, Quick sort, two-way Merge sort, Heap sort, Partition exchange sort, Shell sort, Sorting on different keys, External sorting.

Searching: Linear search, Binary search

File structures: Physical storage media, File Organization, Linked organization of file, Inverted file, Organization records into blocks, Sequential blocks, Hash function, Indexing & Hashing, Multilevel indexing, Tree Index, Random file, Primary Indices, Secondary Indices, B tree index files.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Horowitz and Sahani, "Fundamentals of Data structures", Galgotia publications
- Tannenbaum, "Data Structures", PHI
- R.L. Kruse, B.P. Leary, C.L. Tondo, "Data structure and program design in C" PHI
- "Data structures and algorithms" Schaum Series.
- File Structures An object-Oriented Approach with C++ by Michael J. Folk, Bill Zoellick, Breg Riccardi, Published by Addison Wesley (1st ISE Reprint, 1999).

References:

- J. P. Tremblay and P. G. Sorenson, Introduction to Data Structures with Applications, McGraw Hill Computer Science Series, Mc-Graw Hill New York, 1984
- Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Published by Prentice-Hall India (1999).
- Data Structures Using C and C++ second edition by Yeddidyah Langsam, Moshe J.Augenstein, Aaron M.
 Tenen Baum, Published by Prentice-Hall India
- Data Structures and Algorithm analysis in C++ by Mark Allen Weiss, Published by Addison Wesley (3rd Indian Reprint 2000).
- "Data Structures" R. S. Salaria

ELEMENTS OF MECHANICAL ENGINEERING

Course Code: UCA 205 Credit Units: 03

Course Objective:

The objective of this course is to impart the basic knowledge of thermodynamics, stress- strain, materials & their properties and various manufacturing processes to the students of all engineering discipline.

Course Contents:

Module I: Fundamental Concepts

Definition of thermodynamics, system, surrounding and universe, phase, concept of continuum, macroscopic & microscopic point of view, Thermodynamic equilibrium, property, state, path, process, cyclic process, Zeroth, first and second law of thermodynamics, Carnot Cycle, Introduction to I.C. Engines-two & four stoke S.I. and C.I. engines. Otto cycle. Diesel cycle.

Module II: Stress And Strain Analysis

Simple stress and strain: introduction, normal shear, and stresses-strain diagrams for ductile and brittle materials. Elastic constants, one-dimensional loadings of members of varying cross-section, Strain Energy, Properties of material-strength, elasticity, stiffness, malleability, ductility, brittleness, hardness and plasticity etc; Concept of stress and strain stress strain diagram, tensile test, impact test and hardness test.

Module III: Casting & Forging

Introduction of casting, pattern, mould making procedures, sand mould casting, casting defects, allowances of pattern. Forging-introduction, upsetting & drawing out, drop forging, press forging & m/c forging

Module IV: Welding & Sheet metal working:

Introduction of welding processes, classification, gas welding, arc welding, resistance welding. Introduction to sheet metal shop, Shearing, trimming, blanking, piercing, shaving, notching, stretch forming, nibbling coining, embossing and drawing.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

- Engineering thermodynamics, by P.K. Nag, Tata McGraw Hill.
- Thermal Engineering, by D.S. Kumar. S.K. Kataria and Sons.
- Thermal Engineering by PL Ballaney; Khanna Publishers, Delhi.
- Engineering Thermodynamics: Work and Heat Transfer, by Rogers and Mayhew, ELBS Publications
- Heine, R.W. C.R. Loper and P.C. Rosenthal, Principles of metal casting McGraw Hill
- Welding Technology by R.S. Parmar, Khanna Publishers.
- Thermodynamics and Heat Engines Volume-I, by R. Yadav: Central Publications.
- Ganesan, V. Internal Combustion Engine, Tata McGraw-Hill.

APPLIED PHYSICS - II LAB

Course Code: UCA 221 Credit Units: 01

List of Experiments:

- 1. To determine the wavelength of sodium light by Newton's rings method.
- 2. To determine the dispersive power of the material of prism with the help of a spectrometer.
- 3. To determine the specific rotation of sugar by Bi-quartz or Laurent half shade polarimeter.
- 4. To determine the speed of ultrasonic waves in liquid by diffraction method.
- 5. To determine the width of a narrow slit using diffraction phenomena.
- 6. To determine the temperature coefficient of platinum wire, using a platinum resistance thermometer and a Callender & Griffth's bridge.
- 7. To determine the value of specific charge (ratio of e/m) of an electron by Thomson method.
- 8. To determine the internal resistance of Leclanche cell with the help of Potentiometer.
- 9. To determine the resistance per unit length of a Carey Foster's bridge wire and also to find out the specific resistance of a given wire.
- 10. To plot graph showing the variation of magnetic field with distance along the aixs of a circular coil carrying current, and hence estimate the radius of the coil.
- 11. To determine the value of acceleration due to gravity ('g') in the laboratory using bar pendulum.
- 12. To determine the moment of inertia of a flywheel about its own axis of rotation.
- 13. To determine the density of material of the given wire with the help of sonometer.

Examination Scheme:

]		E
A	PR	PR	V
5	10	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

APPLIED CHEMISTRY LAB

Course Code: UCA 222 Credit Units: 01

Course Contents:

List of Experiments:

(Any 10 Experiments)

- 1. To determine the ion exchange capacity of a given cation exchanger.
- 2. To determine the temporary, permanent and total hardness of a sample of water by complexometric titration method.
- 3. To determine the type and extent of alkalinity of given water sample.
- 4. To determine the number of water molecules of crystallization in Mohr's salt (ferrous ammonium sulphate) provided standard potassium dichromate solution (0.1N) using diphenylamine as internal indicator.
- 5. To determine the ferrous content in the supplied sample of iron ore by titrimetric analysis against standard $K_2Cr_2O_7$ solution using potassium ferricyanide $[K_3Fe(CN)_6]$ as external indicator.
- 6. (a) To determine the surface tension of a given liquid by drop number method.(b) To determine the composition of a liquid mixture A and B (acetic acid and water) by surface tension method.
- 7. To prepare and describe a titration curve for phosphoric acid sodium hydroxide titration using pH-meter.
- 8. (a) To find the cell constant of conductivity cell.
 - (b) Determine the strength of hydrochloric acid solution by titrating it against standard sodium hydroxide solution conductometrically
- 9. Determination of Dissolved oxygen in the given water sample.
- 10 To determine the total residual chlorine in water.
- 11 Determination of amount of oxalic acid and H₂SO₄ in 1 L of solution using N/10 NaOH and N/10 KMnO₄ solution.
- 12 Determination of viscosity of given oil by means of Redwood viscometer I.
- 13 To determine flash point and fire point of an oil by Pensky Martin's Apparatus
- 14 To determine the Iodine value of the oil.

Examination Scheme:

]	H,	E		
A	PR	PR	V		
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

DATA STRUCTURES USING C LAB

Course Code: UCA 223 Credit Units: 01

Software Required: Turbo C++

Assignment will be provided for following:

• Practical application of sorting and searching algorithm.

• Practical application of various data structure like linked list, queue, stack, tree

Examination Scheme:

]	H.	E		
A	PR	PR	V		
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

ELEMENTS OF MECHANICAL ENGINEERING - LAB (EEM)

Course Code: UCA 224 Credit Units: 01

Course Contents:

1. Welding

(a) Arc Welding - Butt Joint

Lap Joint

T Joint

(b) Gas Welding - Butt Joint

- Lap Joint

- Brazing of Broken pieces

2. Foundry - Sand mould casting by single piece pattern&

Split pattern bracket with cores

3. Sheet Metal - Dust Bin

Mug

- Funnel

- Cylindrical Mug with handle-Rectangular

4. Fitting Shop

Male – Female Joint
- Rectangular piece
Filing the job

Examination Scheme:

]	H,	E
A	PR	PR	V
5	10	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

ENVIRONMENTAL STUDIES

Course Code: EVS 001 Credit Units: 04

Course Objective:

The term environment is used to describe, in the aggregate, all the external forces, influences and conditions, which affect the life, nature, behaviour and the growth, development and maturity of living organisms. At present a great number of environment issues, have grown in size and complexity day by day, threatening the survival of mankind on earth. A study of environmental studies is quite essential in all types of environmental sciences, environmental engineering and industrial management. The objective of environmental studies is to enlighten the masses about the importance of the protection and conservation of our environment and control of human activities which has an adverse effect on the environment.

Course Contents:

Module I: The multidisciplinary nature of environmental studies

Definition, scope and importance Need for public awareness

Module II: Natural Resources

Renewable and non-renewable resources:

Natural resources and associated problems

Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.

Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.

Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.

Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies.

Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

- Role of an individual in conservation of natural resources.
- Equitable use of resources for sustainable lifestyles.

Module III: Ecosystems

Concept of an ecosystem

Structure and function of an ecosystem

Producers, consumers and decomposers

Energy flow in the ecosystem

Ecological succession

Food chains, food webs and ecological pyramids

Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, ocean estuaries)

Module IV: Biodiversity and its conservation

Introduction – Definition: genetic, species and ecosystem diversity

Biogeographical classification of India

Value of biodiversity: consumptive use, productive use, social, ethical aesthetic and option values

Biodiversity at global, national and local levels

India as a mega-diversity nation

Hot-spots of biodiversity

Threats to biodiversity: habitat loss, poaching of wildlife, man wildlife conflicts

Endangered and endemic species of India

Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity

Module V: Environmental Pollution

Definition

- - a. Air pollution

- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear pollution

Solid waste management: Causes, effects and control measures of urban and industrial wastes.

Role of an individual in prevention of pollution.

Pollution case studies.

Disaster management: floods, earthquake, cyclone and landslides.

Module VI: Social Issues and the Environment

From unsustainable to sustainable development

Urban problems and related to energy

Water conservation, rain water harvesting, watershed management

Resettlement and rehabilitation of people; its problems and concerns. Case studies.

Environmental ethics: Issues and possible solutions

Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.

Wasteland reclamation

Consumerism and waste products

Environmental Protection Act

Air (Prevention and Control of Pollution) Act

Water (Prevention and control of Pollution) Act

Wildlife Protection Act

Forest Conservation Act

Issues involved in enforcement of environmental legislation

Public awareness

Module VII: Human Population and the Environment

Population growth, variation among nations

Population explosion – Family Welfare Programmes

Environment and human health

Human Rights

Value Education

HIV / AIDS

Women and Child Welfare

Role of Information Technology in Environment and Human Health

Case Studies

Module VIII: Field Work

Visit to a local area to document environmental assets-river / forest/ grassland/ hill/ mountain.

Visit to a local polluted site – Urban / Rural / Industrial / Agricultural

Study of common plants, insects, birds

Study of simple ecosystems-pond, river, hill slopes, etc (Field work equal to 5 lecture hours)

Examination Scheme:

Components	CT	HA	S/V/Q	A	EE
Weightage (%)	15	5	5	5	70

- Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380 013, India, Email:mapin@icenet.net (R)
- Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- Clark R.S., Marine Pollution, Clanderson Press Oxford (TB)
- Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- De A.K., Environmental Chemistry, Wiley Eastern Ltd.
- Down to Earth, Centre for Science and Environment (R)
- Gleick, H.P. 1993. Water in Crisis, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford Univ. Press. 473p
- Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay (R)
- Heywood, V.H & Waston, R.T. 1995. Global Biodiversity Assessment. Cambridge Univ. Press 1140p.

- Jadhav, H & Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi 284 p.
- Mckinney, M.L. & School, R.M. 1996. Environmental Science Systems & Solutions, Web enhanced edition. 639p.
- Mhaskar A.K., Matter Hazardous, Techno-Science Publication (TB)
- Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (TB)
- Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- Rao M N. & Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publ. Co. Pvt. Ltd. 345p.
- Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut
- Survey of the Environment, The Hindu (M)
- Townsend C., Harper J, and Michael Begon, Essentials of Ecology, Blackwell Science
- Trivedi R.K., Handbook of Environmental Laws, Rules Guidelines, Compliances and Standards, Vol I and II, Enviro Media (R)
- Trivedi R. K. and P.K. Goel, Introduction to air pollution, Techno-Science Publication (TB)
- Wanger K.D., 1998 Environnemental Management. W.B. Saunders Co. Philadelphia, USA 499p

ENGLISH

Course Code: BCS 201 Credit Units: 01

Course Objective:

The course is intended to give a foundation of English Language. The literary texts are indented to help students to inculcate creative & aesthetic sensitivity and critical faculty through comprehension, appreciation and analysis of the prescribed literary texts. It will also help them to respond form different perspectives.

Course Contents:

Module I: Vocabulary

Use of Dictionary

Use of Words: Diminutives, Homonyms & Homophones

Module II: Essentials of Grammar - I

Articles

Parts of Speech

Tenses

Module III: Essentials of Grammar - II

Sentence Structure

Subject -Verb agreement

Punctuation

Module IV: Communication

The process and importance

Principles & benefits of Effective Communication

Module V: Spoken English Communication

Speech Drills

Pronunciation and accent

Stress and Intonation

Module VI: Communication Skills-I

Developing listening skills

Developing speaking skills

Module VII: Communication Skills-II

Developing Reading Skills

Developing writing Skills

Module VIII: Written English communication

Progression of Thought/ideas

Structure of Paragraph

Structure of Essays

Module IX: Short Stories

Of Studies, by Francis Bacon

Dream Children, by Charles Lamb

The Necklace, by Guy de Maupassant

A Shadow, by R.K.Narayan

Glory at Twilight, Bhabani Bhattacharya

Module X: Poems

All the Worlds a Stage Shakespeare

To Autumn Keats

O! Captain, My Captain. Walt Whitman
Where the Mind is Without Fear Rabindranath Tagore
Psalm of Life H.W. Longfellow

Examination Scheme:

Components	A	CT	HA	EE
Weightage (%)	05	15	10	70

- Madhulika Jha, Echoes, Orient Long Man
- Ramon & Prakash, Business Communication, Oxford.
- Sydney Greenbaum Oxford English Grammar, Oxford.

BEHAVIOURAL SCIENCE - II (PROBLEM SOLVING AND CREATIVE THINKING)

Course Code: BSS 201 Credit Units: 01

Course Objective:

To enable the students:

Understand the process of problem solving and creative thinking.

Facilitation and enhancement of skills required for decision-making.

Course Contents:

Module I: Thinking as a tool for Problem Solving

What is thinking: The Mind/Brain/Behaviour

Critical Thinking and Learning: Making Predictions and Reasoning Memory and Critical Thinking Emotions and Critical Thinking

Thinking skills

Module II: Hindrances to Problem Solving Process

Perception, Expression, Emotion, Intellect, Work environment

Module III: Problem Solving

Recognizing and Defining a problem, Analyzing the problem (potential causes), Developing possible alternatives, Evaluating Solutions, Resolution of problem, Implementation,

Barriers to problem solving:

Perception,

Expression

Emotion

Intellect

Work environment

Module IV: Plan of Action

Construction of POA, Monitoring, Reviewing and analyzing the outcome

Module V: Creative Thinking

Definition and meaning of creativity, The nature of creative thinking, Convergent and Divergent thinking, Idea generation and evaluation (Brain Storming), Image generation and evaluation, Debating, The six-phase model of Creative Thinking: ICEDIP model

Module VI: End-of-Semester Appraisal

Viva based on personal journal

Assessment of Behavioural change as a result of training

Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25

- Michael Steven: How to be a better problem solver, Kogan Page, New Delhi, 1999
- Geoff Petty: How to be better at creativity; Kogan Page, New Delhi, 1999
- Richard Y. Chang and P. Keith, Kelly: Wheeler Publishing, New Delhi, 1998.
- Phil Lowe Koge Page: Creativity and Problem Solving, New Delhi, 1996
- J William Pfeiffer (ed.) Theories and Models in Applied Behavioural Science, Vol 3, Management (1996);
 Pfeiffer & Company
- Bensley, Alan D.: Critical Thinking in Psychology A Unified Skills Approach, (1998), Brooks/Cole Publishing Company.

FRENCH - II

Course Code: FLF 201 Credit Units: 02

Course Objective:

To enable the students to overcome the fear of speaking a foreign language and take position as a foreigner speaking French.

To make them learn the basic rules of French Grammar.

Course Contents:

Module A: pp.38 - 47: Unité 3: Objectif 3, 4, 5, 6

Module B: pp. 47 to 75 Unité 4, 5

Contenu lexical: Unité 3 : Organiser son temps

- donner/demander des informations sur un emploi du temps, un horaire SNCF – Imaginer un dialogue
- 2. rédiger un message/ une lettre pour ...
 - i) prendre un rendez-vous/ accepter et confirmer/ annuler
 - ii) inviter/accepter/refuser
- 3. Faire un programme d'activités imaginer une conversation téléphonique/un dialogue Propositions- interroger, répondre

Unité 4: Découvrir son environnement

- 1. situer un lieu
- 2. s'orienter, s'informer sur un itinéraire.
- 3. Chercher, décrire un logement
- 4. connaître les rythmes de la vie

Unité 5: s'informer

- 1. demander/donner des informations sur un emploi du temps passé.
- 2. donner une explication, exprimer le doute ou la certitude.
- 3. découvrir les relations entre les mots
- 4. savoir s'informer

Contenu grammatical:

- 1. Adjectifs démonstratifs
- 2. Adjectifs possessifs/exprimer la possession à l'aide de :

i. « de » ii. A+nom/pronom disjoint

3. Conjugaison pronominale – négative, interrogative -

construction à l'infinitif

4. Impératif/exprimer l'obligation/l'interdiction à l'aide de « il

faut.... »/ «il ne faut pas... »

- 5. passé composé
- 6. Questions directes/indirectes

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 1

GERMAN – II

Course Code: FLG 201 Credit Units: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Grammar to consolidate the language base learnt in Semester I

Course Contents:

Module I: Everything about Time and Time periods

Time and times of the day.

Weekdays, months, seasons.

Adverbs of time and time related prepositions

Module II: Irregular verbs

Introduction to irregular verbs like to be, and others, to learn the conjugations of the same, (fahren, essen, lessen, schlafen, sprechen und ähnliche).

Module III: Separable verbs

To comprehend the change in meaning that the verbs undergo when used as such

Treatment of such verbs with separable prefixes

Module IV: Reading and comprehension

Reading and deciphering railway schedules/school time table

Usage of separable verbs in the above context

Module V: Accusative case

Accusative case with the relevant articles

Introduction to 2 different kinds of sentences – Nominative and Accusative

Module VI: Accusative personal pronouns

Nominative and accusative in comparison

Emphasizing on the universal applicability of the pronouns to both persons and objects

Module VII: Accusative prepositions

Accusative propositions with their use

Both theoretical and figurative use

Module VIII: Dialogues

Dialogue reading: 'In the market place'

'At the Hotel'

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre f

 ür Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - II

Course Code: FLS 201 Credit Units: 02

Course Objective:

To enable students acquire more vocabulary, grammar, Verbal Phrases to understand simple texts and start describing any person or object in Simple Present Tense.

Course Contents:

Module I

Revision of earlier modules.

Module II

Some more AR/ER/IR verbs. Introduction to root changing and irregular AR/ER/IR ending verbs

Module III

More verbal phrases (eg, Dios Mio, Que lastima etc), adverbs (bueno/malo, muy, mucho, bastante, poco). Simple texts based on grammar and vocabulary done in earlier modules.

Module IV

Possessive pronouns

Module V

Writing/speaking essays like my friend, my house, my school/institution, myself....descriptions of people, objects etc, computer/internet related vocabulary

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Español, En Directo I A
- Español Sin Fronteras

CHINESE - II

Course Code: FLC 201 Credit Units: 02

Course Objective:

Chinese is a tonal language where each syllable in isolation has its definite tone (flat, falling, rising and rising/falling), and same syllables with different tones mean different things. When you say, "ma" with a third tone, it mean horse and "ma" with the first tone is Mother. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Practice reading aloud, Observe Picture and answer the question., Tone practice., Practice using the language, both by speaking and by taking notes.

Introduction of basic sentence patterns. Measure words., Glad to meet you.

Module II

Where do you live?

Learning different colors. Tones of "bu", Buying things and how muchit costs?

Dialogue on change of Money.

More sentence patterns on Days and Weekdays.

How to tell time. Saying the units of time in Chinese. Learning to say useful phrases like -8:00, 11:25, 10:30 P.M. everyday, afternoon, evening, night, morning 3:58, one hour, to begin, to end etc.

Morning, Afternoon, Evening, Night.

Module III

Use of words of location like-li, wais hang, xia

Furniture – table, chair, bed, bookshelf,.. etc.

Description of room, house or hostel room.. eg what is placed where and how many things are there in it?

Review Lessons - Preview Lessons.

Expression 'yao", "xiang" and "yaoshi" (if).

Days of week, months in a year etc.

I am learning Chinese. Is Chinese difficult?

Module IV

Counting from 1-1000, Use of "chang-chang", Making an Inquiry – What time is it now? Where is the Post Office?, Days of the week. Months in a year, Use of Preposition – "zai", "gen", Use of interrogative pronoun – "duoshao" and "ji", "Whose"??? Sweater etc is it?

Different Games and going out for exercise in the morning.

Module V

The verb "qu"

- Going to the library issuing a book from the library
- Going to the cinema hall, buying tickets
- Going to the post office, buying stamps
- Going to the market to buy things.. etc
- Going to the buy clothes Etc.

Hobby. I also like swimming.

Comprehension and answer questions based on it.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• "Elementary Chinese Reader Part I" Lesson 11-20

DATABASE MANAGEMENT SYSTEMS

Course Code: UCA 301 Credit Units: 03

Course Objective:

The objective of this course is to get students familiar with Databases and their use. They can identify different types of available database model, concurrency techniques and new applications of the DBMS.

Course Contents:

Module I: Introduction

Concept and goals of DBMS, Database Languages, Database Users, Database Abstraction. Basic Concepts of ER Model, Relationship sets, Keys, Mapping, Design of ER Model

Module II: Hierarchical model & Network Model

Concepts, Data definition, Data manipulation and implementation. Network Data Model, DBTG Set Constructs, and Implementation

Module III: Relational Model

Relational database, Relational Algebra, Relational & Tuple Calculus.

Module IV: Relational Database Design and Query Language

SQL, QUEL, QBE, Normalization using Functional Dependency, Multivalued dependency and Join dependency.

Module V: Concurrency Control and New Applications

Lock Based Protocols, Time Stamped Based Protocols, Deadlock Handling, Crash Recovery. Distributed Database, Objective Oriented Database, Multimedia Database, Data Mining, Digital Libraries.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Korth, Silberschatz, "Database System Concepts", 4th Ed., TMH, 2000.
- Steve Bobrowski, "Oracle & Architecture", TMH, 2000

- Date C. J., "An Introduction to Database Systems", 7th Ed., Narosa Publishing, 2004
- Elmsari and Navathe, "Fundamentals of Database Systems", 4th Ed., A. Wesley, 2004
- Ullman J. D., "Principles of Database Systems", 2nd Ed., Galgotia Publications, 1999.

OPERATING SYSTEMS WITH UNIX

Course Code: UCA 302 Credit Units: 03

Course Objective:

Operating Systems serve as one of the most important courses for undergraduate students, since it provides the students with a new sight to envision every computerized systems especially general purpose computers. Therefore, the students are supposed to study, practice and discuss on the major fields discussed in the course to ensure the success of the education process. The outcome of this course implicitly and explicitly affects the abilities the students to understand, analyze and overcome the challenges they face with in the other courses and the real world.

Course Contents:

Module I: Introduction to operating system

Operating system and function, Evolution of operating system, Batch, Interactive, multiprogramming, Time Sharing and Real Time System, multiprocessor system, Distributed system, System protection. Operating System structure, Operating System Services, System Program and calls.

Module II: Process Management

Process concept, State model, process scheduling, job and process synchronization, structure of process management, Threads.

Interprocess Communication and Synchronization: Principle of Concurrency, Producer Consumer Problem, Critical Section problem, Semaphores, Hardware Synchronization, Critical Regions, Conditional critical region, Monitor, Inter Process Communication.

CPU Scheduling: Job scheduling functions, Process scheduling, Scheduling Algorithms, Non Preemptive and preemptive Strategies, Algorithm Evaluation, Multiprocessor Scheduling.

Deadlock: System Deadlock Model, Deadlock Characterization, Methods for handling deadlock, Prevention strategies, Avoidance and Detection, Recovery from deadlock combined approach.

Module III: Memory Management

Single Contiguous Allocation: H/W support, S/W support, Advantages and disadvantages, Fragmentation, Paging, Segmentation, Virtual memory concept, Demand paging, Performance, Paged replaced algorithm, Allocation of frames, Thrashing, Cache memory, Swapping, Overlays

Module IV: Device management

Principles of I/O hardware, Device controller, Device Drivers, Memory mapped I/O, Direct Access Memory, Interrupts, Interrupt Handlers, Application I/O interface, I/O Scheduling, Buffering, Caching, Spooling, Disk organization, Disk space management, Disk allocation Method, Disk Scheduling, Disk storage.

Module V: File System and Protection and security

File Concept, File Organization and Access Mechanism, File Directories, Basic file system, File Sharing, Allocation method, Free space management.

Policy Mechanism, Authentication, Internal excess Authorization.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- A. Silberschatz, P.B. Galvin "Operating System Concepts", John Willey & son
- A. S Tanenbaum, Modern Operating System, 2nd Edition, PHI.

- Milenekovic, "Operating System Concepts", McGraw Hill
- Dietel, "An introduction to operating system", Addision Wesley
- Tannenbaum, "Operating system design and implementation", PHI
- B. W. Kernighan & R. Pike, "The UNIX Programming Environment" Prentice Hall of India, 2000
- Sumitabha Das "Your UNIX The ultimate guide" Tata Mcgraw Hill
- "Design of UNIX Operating System" The Bach Prentice Hall of India

OBJECT ORIENTED PROGRAMMING USING C++

Course Code: UCA 303 Credit Units: 03

Course Objective:

The objective of this module is to introduce object oriented programming. To explore and implement the various features of OOP such as inheritance, polymorphism, Exceptional handling using programming language C ++. After completing this course student can easily identify the basic difference between the programming approaches like procedural and object oriented.

Course Contents:

Module I. Introduction

Review of C, Difference between C and C++, Procedure Oriented and Object Oriented Approach. Basic Concepts: Objects, classes, Principals like Abstraction, Encapsulation, Inheritance and Polymorphism. Dynamic Binding, Message Passing. Characteristics of Object-Oriented Languages. Introduction to Object-Oriented Modeling techniques (Object, Functional and Dynamic Modeling).

Module II: Classes and Objects

Abstract data types, Object & classes, attributes, methods, C++ class declaration, Local Class and Global Class, State identity and behaviour of an object, Local Object and Global Object, Scope resolution operator, Friend Functions, Inline functions, Constructors and destructors, instantiation of objects, Types of Constructors, Static Class Data, Array of Objects, Constant member functions and Objects, Memory management Operators.

Module III.' Inheritance

Inheritance, Types of Inheritance, access modes – public, private & protected, Abstract Classes, Ambiguity resolution using scope resolution operator and Virtual base class, Aggregation, composition vs classification hiérarchies, Overriding inheritance methods, Constructors in derived classes, Nesting of Classes.

Module IV: Polymorphism

Polymorphism, Type of Polymorphism – Compile time and runtime, Function Overloading, Operator Overloading (Unary and Binary) Polymorphism by parameter, Pointer to objects, this pointer, Virtual Functions, pure virtual functions.

Module V. Strings, Files and Exception Handling

Manipulating strings, Streams and files handling, formatted and Unformatted Input output. Exception handling, Generic Programming – function template, class Template Standard Template Library: Standard Template Library, Overview of Standard Template Library, Containers, Algorithms, Iterators, Other STL Elements, The Container Classes, General Theory of Operation, Vectors.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

Text:

- A.R. Venugopal, Rajkumar, T. Ravishanker "Mastering C++", TMH, 1997
- R. Lafore, "Object Oriented Programming using C++", BPB Publications, 2004.
- "Object Oriented Programming with C++" By E. Balagurusamy.
- Schildt Herbert, "C++: The Complete Reference", Wiley DreamTech, 2005.

- Parasons, "Object Oriented Programming with C++", BPB Publication, 1999.
- Steven C. Lawlor, "The Art of Programming Computer Science with C++", Vikas Publication, 2002.
- Yashwant Kanethkar, "Object Oriented Programming using C++", BPB, 2004

APPLIED MATHEMATICS - III

Course Code: UCA 304 Credit Units: 04

Course Objective:

The knowledge of Mathematics is necessary for a better understanding of almost all the Engineering and Science subjects. Here our intention is to make the students acquainted with the concept of basic topics from Mathematics, which they need to pursue their Engineering degree in different disciplines.

Course Contents:

Module I: Partial Differential Equations

Formation of PDE, Equations solvable by direct integration, Linear equations of the first order, Non-linear equations of the first order, Charpit's method, Homogeneous linear equations with constant coefficients, Non homogeneous linear equations.

Module II: Fourier Series

Periodic Functions, Fourier Series, Functions having points of discontinuity, Even or Odd Functions, Change of Interval, Half-range series, Parseval's Formula, Complex form of Fourier series, Practical Harmonic Analysis, Fourier Transforms, Sine and Cosine Transforms.

Module III: Laplace Transformation

Definition, Transforms of elementary functions, Properties of Laplace transforms, Existence conditions, Transforms of derivatives, Transforms of integrals, Evaluation of integrals by Laplace transform, Inverse transforms, Other methods of finding inverse transforms, Convolution theorem, Application to differential equations, Simultaneous linear equations with constant coefficients, Unit step functions, Periodic functions.

Module IV: Linear Programming

Formulation of the problem, Graphical method, Canonical and Standard forms of L.P.P. Simplex Method, Artificial variable Techniques-M-method, Two phase method, Degeneracy, Dual simplex method.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Differential Calculus by Shanti Narain
- Integral Calculus by Shanti Narain
- Higher Engineering Mathematics by B.S. Grewal

- Differential Equations by A.R. Forsyth
- Higher Engineering Mathematics by H.K. Dass
- Partial Differential Equations by I.N. Snedon

DIGITAL ELECTRONICS

Course Code: UCA 305 Credit Units: 03

Course Objective:

This course is an introduction to the basic principles of digital electronics. At the conclusion of this course, the student will be able to quantitatively identify the fundamentals of computers, including number systems, logic gates, logic and arithmetic subsystems, and integrated circuits. They will gain the practical skills necessary to work with digital circuits through problem solving and hands on laboratory experience with logic gates, encoders, flip-flops, counters, shift registers, adders, etc. The student will be able to analyze and design simple logic circuits using tools such as Boolean Algebra and Karnaugh Mapping, and will be able to draw logic diagrams.

Course Contents:

Module I: Boolean Functions

Analog & digital signals, AND, OR, NOT, NAND, NOR & XOR gates, Boolean algebra, Standard representation of logical functions, K-map representation and simplification of logical function, don't care conditions, XOR & XNOR simplifications of K-maps, Tabulation method.

Module II: Combinational Circuits

Adders, Subtractors, Multiplexer, de-multiplexer, decoder & encoder, code converters, Comparators, decoder / driver for display devices, Implementation of logic functions using multiplexer / de-multiplexer,

Module III: Sequential Circuits

Flip-flops: SR, JK, D & T flip flops – Truth table, Excitation table, Conversion of flip-flops, race around condition, Master Slave flip flop, shift registers: SIPO, PISO, PIPO, SIPO, Bi-directional; Counters: ripple & synchronous counters – up / down; Synchronous Sequential circuit: design procedure.

Module IV: Logic families

Logic families: RTL, DTL, TTL, ECL

Module V: Data Converters

Data converters: ADC – successive approximation, linear ramp, dual slope; DAC – Binary Weighted, R-2R ladder type

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Moris Mano: Digital Circuits Systems
R. P. Jain: Digital Logic & Circuits
Thomas L. Floyd: Digital Fundamentals

• Malvino and Leech: Digital Principles & Applications

TERM PAPER

Course Code: UCA 320 Credit Units: 02

A term (or research) paper is primarily a record of intelligent reading in several sources on a particular subject. The students will choose the topic at the beginning of the session in consultation with the faculty assigned. The progress of the paper will be monitored regularly by the faculty. At the end of the semester the detailed paper on the topic will be submitted to the faculty assigned. The evaluation will be done by Board of examiners comprising of the faculties.

GUIDELINES FOR TERM PAPER

The procedure for writing a term paper may consist of the following steps:

- 1. Choosing a subject
- 2. Finding sources of materials
- 3. Collecting the notes
- 4. Outlining the paper
- 5. Writing the first draft
- 6. Editing & preparing the final paper

1. Choosing a Subject

The subject chosen should not be too general.

2. Finding Sources of Materials

- a) The material sources should be not more than 10 years old unless the nature of the paper is such that it involves examining older writings from a historical point of view.
- b) Begin by making a list of subject-headings under which you might expect the subject to be listed.
- c) The sources could be books and magazine articles, news stories, periodicals, scientific journals etc.

3. Collecting the Notes

Skim through sources, locating the useful material, then make good notes of it, including quotes and information for footnotes.

- a) Get facts, not just opinions. Compare the facts with author's conclusion.
- b) In research studies, notice the methods and procedures, results & conclusions.
- c) Check cross references.

4. Outlining the paper

- a) Review notes to find main sub-divisions of the subject.
- b) Sort the collected material again under each main division to find sub-sections for outline so that it begins to look more coherent and takes on a definite structure. If it does not, try going back and sorting again for main divisions, to see if another general pattern is possible.

5. Writing the first draft

Write the paper around the outline, being sure that you indicate in the first part of the paper what its purpose is. You may follow the following:

- a) statement of purpose
- b) main body of the paper
- c) statement of summary and conclusion

Avoid short, bumpy sentences and long straggling sentences with more than one main idea.

6. Editing & Preparing the final Paper

a) Before writing a term paper, you should ensure you have a question which you attempt to answer in your paper. This question should be kept in mind throughout the paper. Include only information/ details/ analyses of relevance to the question at hand. Sometimes, the relevance of a particular section may be clear to you but not to your readers. To avoid this, ensure you briefly explain the relevance of every section.

- b) Read the paper to ensure that the language is not awkward, and that it "flows" properly.
- c) Check for proper spelling, phrasing and sentence construction.
- d) Check for proper form on footnotes, quotes, and punctuation.
- e) Check to see that quotations serve one of the following purposes:
- (i) Show evidence of what an author has said.
- (ii) Avoid misrepresentation through restatement.
- (iii) Save unnecessary writing when ideas have been well expressed by the original author.
- f) Check for proper form on tables and graphs. Be certain that any table or graph is self-explanatory.

Term papers should be composed of the following sections:

- 1) Title page
- 2) Table of contents
- 3) Introduction
- 4) Review
- 5) <u>Discussion</u> & Conclusion
- 6) References
- 7) Appendix

Generally, the introduction, discussion, conclusion and bibliography part should account for a third of the paper and the review part should be two thirds of the paper.

Discussion

The discussion section either follows the results or may alternatively be integrated in the results section. The section should consist of a discussion of the results of the study focusing on the question posed in the research paper.

Conclusion

The conclusion is often thought of as the easiest part of the paper but should by no means be disregarded. There are a number of key components which should not be omitted. These include:

- a) summary of question posed
- b) summary of findings
- c) summary of main limitations of the study at hand
- d) details of possibilities for related future research

Reference

From the very beginning of a research project, you should be careful to note all details of articles gathered. The bibliography should contain ALL references included in the paper. References not included in the text in any form should NOT be included in the bibliography.

The key to a good bibliography is consistency. Choose a particular convention and stick to this.

Conventions

Monographs

Crystal, D. (2001), Language and the internet. Cambridge: Cambridge University Press.

Edited volumes

Gass, S./Neu, J. (eds.) (1996), Speech acts across cultures. Challenges to communication in a second language. Berlin/ NY: Mouton de Gruyter.

[(eds.) is used when there is more than one editor; and (ed.) where there is only one editor. In German the abbreviation used is (Hrsg.) for Herausgeber].

Edited articles

Schmidt, R./Shimura, A./Wang, Z./Jeong, H. (1996), Suggestions to buy: Television commercials from the U.S., Japan, China, and Korea. In: Gass, S./Neu, J. (eds.) (1996), Speech acts across cultures. Challenges to communication in a second language. Berlin/ NY: Mouton de Gruyter: 285-316.

Journal articles

McQuarrie, E.F./Mick, D.G. (1992), On resonance: A critical pluralistic inquiry into advertising rhetoric. Journal of consumer research 19, 180-197.

Electronic book

Chandler, D. (1994), Semiotics for beginners [HTML document]. Retrieved [5.10.'01] from the World Wide Web, http://www.aber.ac.uk/media/Documents/S4B/.

Electronic journal articles

Watts, S. (2000) Teaching talk: Should students learn 'real German'? [HTML document]. German as a Foreign

Language Journal [online] 1. Retrieved [12.09.'00] from the World Wide Web, http://www.gfl-journal.com/.

Other websites

Verterhus, S.A. (n.y.), Anglicisms in German car advertising. The problem of gender assignment [HTML document]. Retrieved [13.10.'01] from the World Wide Web, http://olaf.hiof.no/~sverrev/eng.html.

Unpublished papers

Takahashi, S./DuFon, M.A. (1989), Cross-linguistic influence in indirectness: The case of English directives performed by native Japanese speakers. Unpublished paper, Department of English as a Second Language, University of Hawai'i at Manoa, Honolulu.

Unpublished theses/ dissertations

Möhl, S. (1996), Alltagssituationen im interkulturellen Vergleich: Realisierung von Kritik und Ablehnung im Deutschen und Englischen. Unpublished MA thesis, University of Hamburg.

Walsh, R. (1995), Language development and the year abroad: A study of oral grammatical accuracy amongst adult learners of German as a foreign language. Unpublished PhD dissertation, University College Dublin.

Appendix

The appendix should be used for data collected (e.g. questionnaires, transcripts, ...) and for tables and graphs not included in the main text due to their subsidiary nature or to space constraints in the main text.

Assessment Scheme:

Continuous Evaluation:

40%

(Based on abstract writing, interim draft, general approach, research orientation, readings undertaken etc.)

Final Evaluation:

60%

(Based on the organization of the paper, objectives/ problem profile/ issue outlining, comprehensiveness of the research, flow of the idea/ ideas, relevance of material used/ presented, outcomes vs. objectives, presentation/ viva etc.)

DATABASE MANAGEMENT SYSTEMS LAB

Course Code: UCA 321 Credit Units: 01

Software Required: Oracle 9i

Topics covered in lab will include:

Database Design

- Data Definition (SQL)
- Data Retrieval (SQL)
- Data Modification (SQL)
- Views
- Triggers and Procedures
- PL\SQL

Examination Scheme:

	IA				E	
A	PR	LR	V	PR V		
5	10	10	5	35	35	

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

OPERATING SYSTEM WITH UNIX LAB

Course Code: UCA 322 Credit Units: 01

Software Required: UNIX SCO

Assignments will be provided for the following

• Introduction to UNIX Commands

- Introduction to vi editor
- Programming in shell script
- Introduction to programming in C Shell

Examination Scheme:

IA					E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

- "Unix Programming Environment" The Kernighan and Pike Prentice Hall of India
- "Unix -Shell Programming" Kochar
- "Unix Concepts and application" Das Sumitabha Tata Mcgraw Hill

OBJECT ORIENTED PROGRAMMING USING C++LAB

Course Code: UCA 323 Credit Units: 01

Software Required: Turbo C++

Course Contents:

• Creation of objects in programs and solving problems through them.

- Different use of private, public member variables and functions and friend functions.
- Use of constructors and destructors.
- Operator overloading
- Use of inheritance in and accessing objects of different derived classes.
- Polymorphism and virtual functions (using pointers).
- File handling.

Examination Scheme:

	IA				E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

DIGITAL ELECTRONICS LAB

Course Code: UCA 324 Credit Units: 01

List of Experiments:

- 1. To verify the truth tables of OR, AND, NOR, NAND, EX-OR, EX-NOR gates.
- 2. To obtain half adder, full adder and subtractor using gates and verify their truth tables.
- 3. To verify the truth tables of RS, JK and D flip- flops.
- 4. To design and study a binary counter.
- 5. To design and study synchronous counter.
- 6. To design and study ripple counter.
- 7. To convert BCD number into excess 3 form
- 8. To design and study a decade counter.
- 9. To design and study a sequence detector.
- 10. To implement control circuit using multiplexer.

Examination Scheme:

IA				H,	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

COMMUNICATION SKILLS - I

Course Code: BCS 301 Credit Units: 01

Course Objective:

To form written communication strategies necessary in the workplace

Course Contents:

Module I: Introduction to Writing Skills

Effective Writing Skills Avoiding Common Errors Paragraph Writing Note Taking Writing Assignments

Module II: Letter Writing

Types Formats

Module III

Memo

Agenda and Minutes Notice and Circulars

Module IV: Report Writing

Purpose and Scope of a Report Fundamental Principles of Report Writing Project Report Writing Summer Internship Reports

Examination Scheme:

Components	CT1	CT2	CAF	\mathbf{V}	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD - Group Discussion

GP - Group Presentation

- Business Communication, Raman Prakash, Oxford
- Creative English for Communication, Krishnaswamy N, Macmillan
- Textbook of Business Communication, Ramaswami S, Macmillan
- Working in English, Jones, Cambridge
- A Writer's Workbook Fourth edition, Smoke, Cambridge
- Effective Writing, Withrow, Cambridge
- Writing Skills, Coe/Rycroft/Ernest, Cambridge
- Welcome!, Jones, Cambridge

BEHAVIOURAL SCIENCE - III (INTERPERSONAL COMMUNICATION)

Course Code: BSS 301 Credit Units: 01

Course Objective:

This course provides practical guidance on

Enhancing personal effectiveness and performance through effective interpersonal communication Enhancing their conflict management and negotiation skills

Course Contents:

Module I: Interpersonal Communication: An Introduction

Importance of Interpersonal Communication

Types - Self and Other Oriented

Rapport Building - NLP, Communication Mode

Steps to improve Interpersonal Communication

Module II: Behavioural Communication

Meaning and Nature of behavioural communication

Persuasion, Influence, Listening and Questioning

Guidelines for developing Human Communication skills

Relevance of Behavioural Communication for personal and professional development

Module III: Interpersonal Styles

Transactional Analysis

Life Position/Script Analysis

Games Analysis

Interactional and Transactional Styles

Module IV: Conflict Management

Meaning and nature of conflicts

Styles and techniques of conflict management

Conflict management and interpersonal communication

Module V: Negotiation Skills

Meaning and Negotiation approaches (Traditional and Contemporary)

Process and strategies of negotiations

Negotiation and interpersonal communication

Module VI: End-of-Semester Appraisal

Viva based on personal journal

Assessment of Behavioural change as a result of training

Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25

- Vangelist L. Anita, Mark N. Knapp, Inter Personal Communication and Human Relationships: Third Edition, Allyn and Bacon
- Julia T. Wood. Interpersonal Communication everyday encounter
- Simons, Christine, Naylor, Belinda: Effective Communication for Managers, 1997 1st Edition Cassel
- Goddard, Ken: Informative Writing, 1995 1st Edition, Cassell
- Harvard Business School, Effective Communication: United States of America
- Foster John, Effective Writing Skills: Volume-7, First Edition 2000, Institute of Public Relations (IPR)
- Beebe, Beebe and Redmond; Interpersonal Communication, 1996; Allyn and Bacon Publishers.

FRENCH - III

Course Code: FLF 301 Credit Units: 02

Course Objective:

To provide the students with the know-how

- To master the current social communication skills in oral and in written.
- To enrich the formulations, the linguistic tools and vary the sentence construction without repetition.

Course Contents:

Module B: pp. 76 – 88 Unité 6

Module C: pp. 89 to 103 Unité 7

Contenu lexical: Unité 6: se faire plaisir

- 1. acheter : exprimer ses choix, décrire un objet (forme, dimension, poids et matières) payer
- 2. parler de la nourriture, deux façons d'exprimer la quantité, commander un repas au restaurant
- 3. parler des différentes occasions de faire la fête

Unité 7: Cultiver ses relations

- 1. maîtriser les actes de la communication sociale courante (Salutations, présentations, invitations, remerciements)
- 2. annoncer un événement, exprimer un souhait, remercier, s'excuser par écrit.
- 3. caractériser une personne (aspect physique et caractère)

Contenu grammatical:

- 1. accord des adjectifs qualificatifs
- 2. articles partitifs
- 3. Négations avec de, ne...rien/personne/plus
- 4. Questions avec combien, quel...
- 5. expressions de la quantité
- 6. ne...plus/toujours encore
- 7. pronoms compléments directs et indirects
- 8. accord du participe passé (auxiliaire « avoir ») avec l'objet direct
- 9. Impératif avec un pronom complément direct ou indirect
- 10. construction avec « que » Je crois que/ Je pense que/ Je sais que

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 1

GERMAN - III

Course Code: FLG 301 Credit Units: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Course Contents:

Module I: Modal verbs

Modal verbs with conjugations and usage Imparting the finer nuances of the language

Module II: Information about Germany (ongoing)

Information about Germany in the form of presentations or "Referat" – neighbors, states and capitals, important cities and towns and characteristic features of the same, and also a few other topics related to Germany.

Module III: Dative case

Dative case, comparison with accusative case
Dative case with the relevant articles

Introduction to 3 different kinds of sentences - nominative, accusative and dative

Module IV: Dative personal pronouns

Nominative, accusative and dative pronouns in comparison

Module V: Dative prepositions

Dative preposition with their usage both theoretical and figurative use

Module VI: Dialogues

In the Restaurant,

At the Tourist Information Office,

A telephone conversation

Module VII: Directions

Names of the directions

Asking and telling the directions with the help of a roadmap

Module VIII: Conjunctions

To assimilate the knowledge of the conjunctions learnt indirectly so far

Examination Scheme:

Components	CT1	CT2	C	I	\mathbf{V}	A
Weightage (%)	20	20	20	20	15	5

C - Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - III

Course Code: FLS 301 Credit Units: 02

Course Objective:

To enable students acquire knowledge of the Set/definite expressions (idiomatic expressions) in Spanish language and to handle some Spanish situations with ease.

Course Contents:

Module I

Revision of earlier semester modules

Set expressions (idiomatic expressions) with the verb Tener, Poner, Ir....

Weather

Module II

Introduction to Gustar...and all its forms. Revision of Gustar and usage of it

Module III

Translation of Spanish-English; English-Spanish. Practice sentences.

How to ask for directions (using estar)

Introduction to IR + A + INFINITIVE FORM OF A VERB

Module IV

Simple conversation with help of texts and vocabulary

En el restaurante

En el instituto

En el aeropuerto

Module V

Reflexives

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C - Project + Presentation

I – Interaction/Conversation Practice

- Español, En Directo I A
- Español Sin Fronteras -Nivel Elemental

CHINESE - III

Course Code: FLC 301 Credit Units: 02

Course Objective:

Foreign words are usually imported by translating the concept into Chinese, the emphasis is on the meaning rather than the sound. But the system runs into a problem because the underlying name of personal name is often obscure so they are almost always transcribed according to their pronciation alone. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Dialogue practice

Observe picture and answer the question.

Introduction of written characters.

Practice reading aloud

Practice using the language both by speaking and by taking notes.

Character writing and stroke order

Module II

Measure words

Position words e.g. inside, outside, middle, in front, behind, top, bottom, side, left, right, straight.

Directional words – beibian, xibian, nanbian, dongbian, zhongjian.

Our school and its different building locations.

What game do you like?

Difference between "hii" and "neng", "keyi".

Module III

Changing affirmative sentences to negative ones and vice versa

Human body parts, Not feeling well words e.g.; fever, cold, stomach ache, head ache.

Use of the modal particle "le", Making a telephone call, Use of "jiu" and "cal" (Grammar portion),

Automobiles e.g. Bus, train, boat, car, bike etc.

Traveling, by train, by airplane, by bus, on the bike, by boat.. etc.

Module IV

The ordinal number "di", "Mei" the demonstrative pronoun e.g. mei tian, mei nian etc.

Use of to enter to exit, Structural particle "de" (Compliment of degree).

Going to the Park, Description about class schedule during a week in school, Grammar use of "li" and "cong".

Comprehension reading followed by questions.

Module V

Persuasion-Please don't smoke, Please speak slowly, Praise – This pictorial is very beautiful, Opposites e.g. Clean-Dirty, Little-More, Old-New, Young-Old, Easy-Difficult, Boy-Girl, Black-White, Big-Small, Slow-Fast ... etc.

Talking about studies and classmates, Use of "it doesn't matter", Enquiring about a student, description about study method.

Grammar: Negation of a sentence with a verbal predicate.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C - Project + Presentation

I - Interaction/Conversation Practice

Text & References:

• "Elementary Chinese Reader Part I, Part-2" Lesson 21-30

THEORY OF AUTOMATA AND COMPUTATION

Course Code: UCA 401 Credit Units: 03

Course Objective:

The course begins with the basic mathematical preliminaries and goes on to discuss the general theory of automata, properties of regular sets and regular expressions, and the basics of formal languages. Besides, sufficient attention is devoted to such topics as pushdown automata and it's relation with context free languages, Turing machines and linear bounded automata, the basic concepts of computability such as primitive recursive functions and partial recursive functions.

Course Contents:

Module I: Introduction to Languages and Automata

Formal Grammars and Chomsky Hierarchy, Regular Expression Deterministic and Nondeterministic Finite Automata, Regular Expression, Two way Finite Automata, Finite Automata with output, Properties of regular sets, pumping lemma for regular sets, My-Hill-Nerode Theorem.

Module II: Context Free Grammars and Pushdown Automata

CFG: Formal Definition, Derivation and Syntax trees, Simplification Forms, Ambiguous Grammar, Properties of CFL, Normal Forms (CNF and GNF)

Pushdown Automata: Definitions, Relationship between PDA and context free language, Decision Algorithms

Module III: Turing Machine

The Turing Machine Model, Language acceptability of Turing Machine, Design of TM, Variation of TM, Universal TM, Church's Machine.

Recursive and recursively enumerable language, unrestricted grammars, Context Sensitive Language, Linear Bounded Automata (LBA).

Module IV: Undecidability

Turing machine halting Problem, undecidable problems for recursive enumerable language, Post correspondence problems (PCP) and Modified Post correspondence problems, Undecidable problems for CFL.

Module V: Computability

Partial and Total Functions, Primitive Recursive functions, Recursive functions.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Hopcroft and Ullman, "Introduction to Automata Theory, languages and computation", Addision Wesley.
- "An introduction to formal languages and Automata (2nd ed)" by Peter Linz, D. C. Health and Company.

- "Introduction to theory of computation (2nd Ed)" by Michael sipser.
- Mishra & Chandrashekharan, "Theory of Computer Sciences", PHI.
- Zavi Kohavi, "Switching and finite Automata Theory "
- Kohan, "Theory of Computer Sciences".
- Korral, "Theory of Computer Sciences".

DISCRETE MATHEMATICS

Course Code: UCA 402 Credit Units: 04

Course Objective:

This subject provides students with an in-depth education in the conceptual foundations of computer science and in engineering complex software and hardware systems. It allows them to explore the connections between computer science and a variety of other disciplines in engineering and outside. Combined with a strong education in mathematics, sciences, and the liberal arts it prepares students to be leaders in computer science practice, applications to other disciplines, and research.

Course Contents:

Module I: Formal Logic

Statement, Symbolic Representation and Tautologies, Quantifiers, Predicator and validity, Normal form. Propositional Logic, Predicate Logic, First Order Logic.

Module II: Proof & Relation

Techniques for theorem proving: Direct Proof, Proof by Contra position, Proof by exhausting cares and proof by contradiction, principle of mathematical induction, principle of complete induction. Recursive definitions, solution methods for linear, first-order recurrence relations with constant coefficients.

Module III: Sets and Combinations

Sets, Subtracts, power sets, binary and unary operations on a set, set operations/set identities, fundamental country principles, principle of inclusion, exclusion and pigeonhole principle, permutation and combination, Pascal's triangles, Comparing rates of growth: big theta, little oh, big oh and big omega.

Module IV: Relation/function and matrices

Relation/function and matrices: Relation, properties of binary relation, operation on binary relation, closures, partial ordering, equivalence relation, Function, properties of function, composition of function, inverse, binary and n-ary operations,

characteristic function, Permutation function, composition of cycles, Boolean matrices, Boolean matrices multiplication.

Module V: Lattices & Boolean Algebra

Lattices: definition, sub lattices, direct product, homomorphism Boolean algebra: definition, properties, isomorphic structures (in particulars, structures with binary operations) sub algebra, direct product and homomorphism, Boolean function, Boolean expression, representation & minimization of Boolean function.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- J.P. Tremblay & R. Mamohan, "Discrete Mathematical Structure with Application to Computer Science," TMH, New Delhi (2000).
- Kolman, Busby & Ross "Discrete Mathematical Structures", PHI.
- Iyengar, Chandrasekaran and Venkatesh, "Discrete Mathematics", Vikas Publication.
- Peter Linz, "An Introduction to Formal Languages and Automata", Narosa Publishing House.

- J. Truss, "Discrete Mathematics", Addison Wesley.
- C.L. Liu, "Elements of Discrete Mathematics", McGraw Hill Book Company.
- M. Lipson & Lipshutz, "Discrete Mathematics", Schaum's Outline series.

COMPUTER GRAPHICS

Course Code: UCA 403 Credit Units: 03

Course Objective:

The objective of the course is to provide the understanding of the fundamental graphical operations and the implementation on computer, the mathematics behind computer graphics, including the use of spline curves and surfaces. It gives the glimpse of recent advances in computer graphics, user interface issues that make the computer easy, for the novice to use.

Course Contents:

Module I: Introduction to Graphics and Graphics Hardware System

Video display devices, CRT, LCD Display devices Raster scan displays, Random scan displays, Raster scan systems, Random scan Systems.

Input devices, keyboard, mouse, Trackball and spaceball, Joystick, Data glove, Digitizers, Image scanners, Touch panels, Light pens, Voice systems.

Hardcopy devices, Printers, Plotters.

Module II: Output Primitives and Clipping operations

Algorithms for drawing 2D Primitives lines (DDA and Bresenham's line algorithm), circles (Bresenham's and midpoint circle algorithm), ellipses (midpoint ellipse algorithm), other curves(conic sections, polynomials and spline curves).

Antialiasing and filtering techniques

Line clipping (cohen-sutherland algorithm), clip windows, circles, ellipses, polygon, clipping with Sutherland Hodgeman algorithm.

Module III: Geometric transformation

2D Transformation: Basic transformation, Translation, Rotation, scaling, Matrix Representations and Homogeneous coordinates, window to viewport transformation.

3D Concepts: Parallel projection and Perspective projection, 3 D Transformation.

Module IV: 3 D Object Representation, Colour models and rendering

Polygon meshes in 3 D, Spheres, Ellipsoid, Bezier curves and Bezier surfaces, Bspline curves and surfaces, solid modeling, sweep representation, constructive solid geometry methods. Achromatic and color models.

Shading, rendering techniques and visible surface detection method: Basic illumination, diffuse reflection, specular reflection, transparency, shadows. Polygon rendering method, Gouraud & Phong shading, Ray tracing method, recursive ray tracing, radio-sity method. Depth-buffer method, A-buffer method, Depth-sorting method(painter's algorithm), Oct-tres method.

Module V: Introduction to multimedia

File formats for BMP, GIF, TIFF, IPEG, MPEG-II, Animation techniques and languages. Design of animation sequences, Computer Animation languages, Elementary filtering techniques and elementary Image Processing techniques

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Foley et. al., "Computer Graphics Principles & practice", 2nd ed. AWL, 2000.
- D. Hearn and P. Baker, "Computer Graphics", Prentice Hall, 1986.
- R. Plastock and G. Kalley, "Theory and Problems of Computer Graphics", Schaum's Series, McGraw Hill, 1986

- R.H. Bartels, J.C. Beatty and B.A. Barsky, "An Introduction to Splines for use in Computer Graphics and Geometric Modeling", Morgan Kaufmann Publishers Inc., 1987.
- C.E. Leiserson, T.H. Cormen and R.L. Rivest, "Introduction to Algorithms", McGraw-Hill Book Company, 1990.
- W. Newman and R. Sproul, "Principles of Interactive Computer Graphics, McGraw-Hill, 1973.
- F.P. Preparata and M.I. Shamos, "Computational Geometry: An Introduction", Springer-Verlag New York Inc., 1985.
- D. Rogers and J. Adams, "Mathematical Elements for Computer Graphics", MacGraw-Hill International Edition, 1989
- David F. Rogers, "Procedural Elements for Computer Graphics", McGraw Hill Book Company, 1985.
- Alan Watt and Mark Watt, "Advanced Animation and Rendering Techniques", Addison-Wesley, 1992

DATA COMMUNICATION AND COMPUTER NETWORKS

Course Code: UCA 404 Credit Units: 03

Course Objective:

The objective is to acquaint the students with the basics of data communication and networking. A structured approach to explain how networks work from the inside out is being covered. The physical layer of networking, computer hardware and transmission systems have been explained. In-depth application coverage includes email, the domain name system; the World Wide Web (both client- and server-side); and multimedia (including voice over IP.

Course Contents:

Module I: Introduction

Introduction to computer networks, evolution of computer networks and its uses, reference models, example networks

The physical layer: Theoretical basis for data communication, transmission media, wireless transmission, telecom infrastructure, PSTN, communication satellites, mobile telephone system

Module II: The data link layer

Data link layer design issues, error detection and correction, data link protocols, sliding window protocols, example of data link protocols- HDLC, PPP Access

Module III: Medium access layer

Channel allocation problem, multiple access protocols, ALOHA, CSMA/CD, IEEE Standard 802 for LAN and MAN, Bridges

Module IV: The network layer

Network layer concepts, design issues, static and dynamic routing algorithms, shortest path routing, flooding, distance vector routing, link state routing, distance vector routing, multicast routing, congestion control algorithm, internetworking, Ipv4

Module V: The transport layer

The transport services, elements of transport protocols, TCP and UDP

The application layer: Brief introduction to presentation and session layer, DNS, E-mail, WWW

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Computer networks: Tanenbaum, Andrew S, Prentice Hall
- Data communication & networking: Forouzan, B. A.

- Computer network protocol standard and interface: Uyless, Black
- Data and Computer Communications, Seventh Edition (7th.) William Stallings Publisher: Prentice Hall
- Computer Networking: A Top-Down Approach Featuring the Internet (3rd Edition) by James F. Kurose

DATA COMMUNICATION AND COMPUTER NETWORKS LAB

Course Code: UCA 422 Credit Units: 01

Equipments Required:

Switch Network Cables, Patch Chord- Fiber optical and twisted pair cable, LAN cards, RJ-45 connectors etc. Platforms required: Linux Server

Course Contents:

- Introduction and Installation of Linux
- Administrating Linux
- Setting up a Local Area Network
- Connecting to the Internet
- Setting up Print Server
- Setting up File Server
- Setting up Mail Server
- Setting up FTP Server
- Setting up Web Server
- Setting up MySQL Database Server

Examination Scheme:

IA				EE	
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

COMPUTER GRAPHICS LAB

Course Code: UCA 421 Credit Units: 01

Software Required: Turbo C++

Course Contents:

Assignments will be provided for the following:

• Geometrical shapes based on graphics algorithms

- 2D Geometric transformation translation, rotation, scaling, reflection.
- Clipping
- Animation

Examination Scheme:

IA				l H	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

COMMUNICATION SYSTEMS

Course Code: UCA 405 Credit Units: 03

Course Objective:

The purpose of this course is to provide a thorough introduction to analog and digital communications with an in depth study of various modulation techniques, Random processes are discussed, and information theory is introduced.

Course Contents:

Module I: Introduction

Communication Process, Source of Information, Communication channels, base-band and pass-band signals, Review of Fourier transforms, Random variables, different types of PDF, need of modulation process, primary communication resources, analog versus digital communications

Module II: Amplitude modulation

Amplitude modulation with full carrier, suppressed carrier systems, single side band transmission, switching modulators, synchronous detection, envelope detection, effect of frequency and phase errors in synchronous detection, comparison of various AM systems, vestigial side band transmission.

Module III: Angle Modulation

Narrow and wide band FM, BW calculations using Carlson rule, Direct & Indirect FM generations, phase modulation, Demodulation of FM signals, noise reduction using pre & de-emphasis.

Module IV: Pulse Modulation

Pulse amplitude, width & position modulation, generation & detection of PAM, PWM & PPM, Comparison of frequency division and time division multiplexed systems,

Basics of digital communications: ASK, PSK, FSK, QPSK basics & wavform with brief mathematical introduction

Module V: Noise

Different types of noise, noise calculations, equivalent noise band width, noise figures, effective noise temperature, noise figure.

Module VI: Introduction to Information Theory

Measurement of Information, mutual, Shannon's theorem, Source coding, channel coding and channel capacity theorem, Huffman code

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- B. P. Lathi: "Modern analog & digital communication", OXFORD Publications
- Wayne Tomasi: "Electronic Communication systems", Pearson Education, 5th edition

- Simon Haykin, "Communication Systems", John Wiley & Sons, 1999, Third Edition.
- Taub and schilling, "Principles of Communication Systems" TMH

WEBSITE DESIGN

Course Code: UCA 406 Credit Units: 03

Course Objective:

To design web base and context aware systems to acquire, organize process, share and use the knowledge of web sites. The field of web site is multidisciplinary as web sites are amazingly complex systems. The major objective of this course is to provide a sound foundation to the students on the concepts, percepts and practices in a field that is of immense concern to the industry and business.

Course Contents:

Module I: Overview of Internet

Introduction to Internet and WWW, Concept of Networking and Layers of OSI Model, Internet protocols like TCP/IP, http, telnet and ftp, URL, email, domain name, Web Browsers.

Module II: Principles of Web Design

Key issues to be considered in web site design. Structure of a Web Page: Introduction to HTML, Elements of HTML syntax, Head and Body sections, Building HTML documents, Inserting text, images, hyperlinks, Backgrounds and Color Control, HTML Editors & Tools: Use of different HTML editors and tools like Netscape Communicator and Microsoft Front Page etc

Module III: HTML Tags

Use of Different HTML tags in web pages. Table Handling: Table layout & presentation, constructing tables in a web page, developing a web page in a table. Ordered and unordered lists. Frames: Developing Web pages using frames. Advantages and disadvantages of frames. Creating forms, Role of Databases in web applications. Use of at least one graphical and animation tools like Adobe Fireworks, Abode Photoshop, Gif Animator, Gimp etc.

Module IV: Cascading style-sheet (CSS) in HTML

Introduction to Cascading Style Sheets (CSS), Types of Style Sheets (Inline, Internal and External), CSS for Website Layout and Print Layout.

Types of various CSS Selectors, CSS properties: Type Properties, Background Properties, Block Properties, Box Model Properties, List Properties, Border Properties, Positioning Propeties.

Module V: Introduction to Java Script

Role of java script in a web page, Script writing basics, Adding interactivity to a web page, creating dynamic web pages,

Similarities to java, embedding JavaScript code, embedding java applets in a web page, Form validation using java script

Projects:

Creating a discussion form, creating an online store, creating a job site.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Ramesh Bangia, "Web Technology", Firewall media
- C. Xavier, "World Wide Web Design with HTML", Tata McGraw Hill.
- Unleashed ASP, Techmedia

- Rick Dranell, "HTML4 unleashed", Techmedia Publication.
- Shelly Powers, "Dynamic Web Publishing Unleashed", Techmedia.
- Don Gosselin, "JavaScript", Vikas Publication

COMMUNICATION SYSTEMS LAB

Course Code: UCA 423 Credit Units: 01

List of Experiments:

- 1. To study the sampling and reconstruction of a given signal.
- 2. To study amplitude modulation and demodulation.
- 3. To study frequency modulation and demodulation.
- 4. To study time division multiplexing.
- 5. To study pulse amplitude modulation.
- 6. To study delta and adaptive delta modulation and demodulation.
- 7. To study carrier modulation techniques using amplitude shift keying and Frequency shift keying.
- 8. To study carrier modulation techniques using binary phase shift keying and differential shift keying.
- 9. To study pulse code modulation & differential pulse code modulation as well as relevant demodulations.
- 10. To study quadrature phase shift keying & quadrature amplitude modulation.

Examination Scheme:

IA				E	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

WEBSITE DESIGN LAB

Course Code: UCA 424 Credit Units: 01

Software Required: Java

List of Assignment:

1. Design a HTML page using all the basic tags.

- 2. Design a page containing your educational qualification in a table.
- 3. Design a page containing an ordered list/unordered list.
- 4. Design a HTML page for your resume.
- 5. Design a form in HTML to enter different attribute of student information.
- 6. Design a home page for ASE using Frame.
- 7. Design another page and connect these to the home page.
- 8. Write a function in Javascript for input validation.
- 9. Write a function in Javascript to calculate monthly installation of the loan.
- 10. Write an input form and save its data in a database using ASP.
- 11. Display the data stored in database in tabular form on the page.

Examination Scheme:

]		E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

COMMUNICATION SKILLS - II

Course Code: BCS 401 Credit Units: 01

Course Objective:

To teach the participants strategies for improving academic reading and writing.

Emphasis is placed on increasing fluency, deepening vocabulary, and refining academic language proficiency.

Course Contents:

Module I: Social Communication Skills

Small Talk Conversational English Appropriateness Building rapport

Module II: Context Based Speaking

In general situations In specific professional situations Discussion and associated vocabulary Simulations/Role Play

Module III: Professional Skills

Presentations Negotiations Meetings Telephony Skills

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD - Group Discussion

GP - Group Presentation

Text & References:

- Essential Telephoning in English, Garside/Garside, Cambridge
- Working in English, Jones, Cambridge
- Business Communication, Raman Prakash, Oxford
- Speaking Personally, Porter-Ladousse, Cambridge
- Speaking Effectively, Jermy Comfort, et.al, Cambridge
- Business Communication, Raman Prakash, Oxford

BEHAVIOURAL SCIENCE – IV (RELATIONSHIP MANAGEMENT)

Course Code: BSS 401 Credit Units: 01

Course Objective:

To understand the basis of interpersonal relationship To understand various communication style To learn the strategies for effective interpersonal relationship

Course Contents:

Module I: Understanding Relationships

Importance of relationships Role and relationships Maintaining healthy relationships

Module II: Bridging Individual Differences

Understanding individual differences Bridging differences in Interpersonal Relationship – TA Communication Styles

Module III: Interpersonal Relationship Development

Importance of Interpersonal Relationships Interpersonal Relationships Skills Types of Interpersonal Relationships

Module IV: Theories of Interpersonal Relationships

Theories: Social Exchange, Uncertainty Reduction Theory Factors Affecting Interpersonal Relationships Improving Interpersonal Relationships

Module V: Impression Management

Meaning & Components of Impression Management Impression Management Techniques (Influencing Skills) Impression Management Training-Self help and Formal approaches

Module VI: End-of-Semester Appraisal

Viva based on personal journal Assessment of Behavioural change as a result of training Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term	VIVA	Journal for
			Test (CT)		Success (JOS)
Weightage (%)	20	05	20	30	25

Text & References:

- Vangelist L. Anita, Mark N. Knapp, Inter Personal Communication and Human Relationships: Third Edition, Allyn and Bacon
- Julia T. Wood. Interpersonal Communication everyday encounter
- Simons, Christine, Naylor, Belinda: Effective Communication for Managers, 1997 1st Edition Cassell
- Goddard, Ken: Informative Writing, 1995 1st Edition, Cassell
- Harvard Business School, Effective Communication: United States of America
- Foster John, Effective Writing Skills: Volume-7, First Edition 2000, Institute of Public Relations (IPR)
- Beebe, Beebe and Redmond; Interpersonal Communication, 1996; Allyn and Bacon Publishers.

FRENCH - IV

Course Code: FLF 401 Credit Units: 02

Course Objective:

To enable students:

• To develop strategies of comprehension of texts of different origin

• To present facts, projects, plans with precision

Course Contents:

Module C: pp. 104 – 139 : Unités 8,9

Contenu lexical : Unité 8: Découvrir le passé

- 1. parler du passé, des habitudes et des changements.
- parler de la famille, raconter une suite d'événements/préciser leur date et leur durée.
- 3. connaître quelques moments de l'histoire

Unité 9: Entreprendre

- 1. faire un projet de la réalisation: (exprimer un besoin, préciser les étapes d'une réalisation)
- 2. parler d'une entreprise
- 3. parler du futur

Contenu grammatical:

- 1. Imparfait
- 2. Pronom « en »
- 3. Futur
- 4. Discours rapporté au présent
- 5. Passé récent
- 6. Présent progressif

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 1

GERMAN - IV

Course Code: FLG 401 Credit Units: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany.

Introduction to Advanced Grammar Language and Professional Jargon

Course Contents:

Module I: Present perfect tense

Present perfect tense, usage and applicability Usage of this tense to indicate near past Universal applicability of this tense in German

Module II: Letter writing

To acquaint the students with the form of writing informal letters.

Module III: Interchanging prepositions

Usage of prepositions with both accusative and dative cases Usage of verbs fixed with prepositions Emphasizing on the action and position factor

Module IV: Past tense

Introduction to simple past tense Learning the verb forms in past tense Making a list of all verbs in the past tense and the participle forms

Module V: Reading a Fairy Tale

Comprehension and narration

- Rotkäppchen
- Froschprinzessin
- Die Fremdsprache

Module VI: Genitive case

Genitive case – Explain the concept of possession in genitive Mentioning the structure of weak nouns

Module VII: Genitive prepositions

Discuss the genitive propositions and their usage: (während, wegen, statt, trotz)

Module VIII: Picture Description

Firstly recognize the persons or things in the picture and identify the situation depicted in the picture; Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - IV

Course Code: FLS 401 Credit Units: 02

Course Objective:

To enable students acquire working knowledge of the language; to give them vocabulary, grammar, voice modulations/intonations to handle everyday Spanish situations with ease.

Course Contents:

Module I

Revision of earlier semester modules Introduction to Present Continuous Tense (Gerunds)

Module II

Translation with Present Continuous Tense Introduction to Gustar, Parecer, Apetecer, doler

Module III

Imperatives (positive and negative commands of regular verbs)

Module IV

Commercial/business vocabulary

Module V

Simple conversation with help of texts and vocabulary En la recepcion del hotel En el restaurante En la agencia de viajes En la tienda/supermercado

Examination Scheme:

Components	CT1	CT2	C	I	\mathbf{V}	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• Español Sin Fronteras (Nivel – Elemental)

CHINESE – IV

Course Code: FLC 401 Credit Units: 02

Course Objective:

How many characters are there? The early Qing dynasty dictionary included nearly 50,000 characters the vast majority of which were rare accumulated characters over the centuries. An educate person in China can probably recognize around 6000 characters. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Dialogue Practice
Observe picture and answer the question
Pronunciation and intonation
Character writing and stroke order.
Electronic items

Module II

Traveling - The Scenery is very beautiful

Weather and climate

Grammar question with - "bu shi Ma?"

The construction "yao ... le" (Used to indicate that an action is going to take place)

Time words "yiqian", "yiwai" (Before and after).

The adverb "geng".

Module III

Going to a friend house for a visit meeting his family and talking about their customs.

Fallen sick and going to the Doctor, the doctor examines, takes temperature and writes prescription.

Aspect particle "guo" shows that an action has happened some time in the past.

Progressive aspect of an actin "zhengzai" Also the use if "zhe" with it.

To welcome someone and to see off someone I cant go the airport to see you off... etc.

Module IV

Shipment. Is this the place to checking luggage?

Basic dialogue on - Where do u work?

Basic dialogue on – This is my address

Basic dialogue on – I understand Chinese

Basic dialogue on – What job do u do?

Basic dialogue on – What time is it now?

Module V

Basic dialogue on – What day (date) is it today?

Basic dialogue on – What is the weather like here.

Basic dialogue on – Do u like Chinese food?

Basic dialogue on – I am planning to go to China.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• "Elementary Chinese Reader, Part-2" Lesson 31-38

SOFTWARE ENGINEERING

Course Code: UCA 501 Credit Units: 03

Course Objective:

The basic objective of Software Engineering is to develop methods and procedures for software development that can scale up for large systems and that can be used to consistently produce high-quality software at low cost and with a small cycle time. Software Engineering is the systematic approach to the development, operation, maintenance, and retirement of software.

The course provides a thorough introduction to the fundamentals principles of software engineering. The organization broadly be based on the classical analysis-design-implementation framework.

Course Contents:

Module I: Introduction

Software life cycle models: Waterfall, Prototype, Evolutionary and Spiral models, Overview of Quality Standards like ISO 9001, SEI-CMM

Module II: Software Metrics and Project Planning

Size Metrics like LOC, Token Count, Function Count, Design Metrics, Data Structure Metrics, Information Flow Metrics. Cost estimation, static, Single and multivariate models, COCOMO model, Putnam Resource Allocation Model, Risk management.

Module III: Software Requirement Analysis, design and coding

Problem Analysis, Software Requirement and Specifications, Behavioural and non-behavioural requirements, Software Prototyping Cohesion & Coupling, Classification of Cohesiveness & Coupling, Function Oriented Design, Object Oriented Design, User Interface Design Top-down and bottom-up Structured programming, Information hiding,

Module IV: Software Reliability, Testing and Maintenance

Failure and Faults, Reliability Models: Basic Model, Logarithmic Poisson Model, Software process, Functional testing: Boundary value analysis, Equivalence class testing, Decision table testing, Cause effect graphing, Structural testing: path testing, Data flow and mutation testing, unit testing, integration and system testing, Debugging, Testing Tools, & Standards. Management of maintenance, Maintenance Process, Maintenance Models, Reverse Engineering, Software RE-engineering

Module V: UML

Introduction to UML, Use Case Diagrams, Class Diagram: State Diagram in UML Activity Diagram in UML Sequence Diagram in UML Collaboration Diagram in UML

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- K. K. Aggarwal & Yogesh Singh, "Software Engineering", 2nd Ed, New Age International, 2005.
- R. S. Pressman, "Software Engineering A practitioner's approach", 5th Ed., McGraw Hill Int. Ed., 2001.

- R. Fairley, "Software Engineering Concepts", Tata McGraw Hill, 1997.
- P. Jalote, "An Integrated approach to Software Engineering", Narosa, 1991.
- Stephen R. Schach, "Classical & Object Oriented Software Engineering", IRWIN, 1996.
- James Peter, W. Pedrycz, "Software Engineering", John Wiley & Sons.
- Sommerville, "Software Engineering", Addison Wesley, 1999

COMPUTER ARCHITECTURE

Course Code: UCA 502 Credit Units: 03

Course Objective:

This course deals with computer architecture as well as computer organization and design. Computer architecture is concerned with the structure and behaviour of the various functional modules of the computer and how they interact to provide the processing needs of the user. Computer organization is concerned with the way the hardware components are connected together to form a computer system. Computer design is concerned with the development of the hardware for the computer taking into consideration a given set of specifications.

Course Contents:

Module I: Register Transfer Language

Register Transfer, Bus and Memory Transfers, Arithmetic Micro-operations, Logic Micro-operations, Shift Micro-operations, Arithmetic Logic shift Unit.

Module II: Basic Computer Organizations and Design

Instruction Codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory-Reference Instructions, Input-Output and Interrupt, Design of Accumulator Logic. Hardwired and Microprogrammed control: Control Memory, Address Sequencing, Design of Control Unit

Module III: Central Processing Unit

Introduction, General Register Organization, Stack Organization, Instruction representation, Instruction Formats, Instruction type, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer RISC and CISC

Computer Arithmetic: Introduction, Multiplication Algorithms, Division Algorithms, Floating-Point Arithmetic Operations

Module IV: Memory and Intrasystem Communication and Input output organisation

Memory: Memory types and organization Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory, Memory Management Hardware

Intrasystem communication and I/O: Peripheral Devices, Input-Output

Controller and I/O driver, IDE for hard disk, I/O port and Bus concept, Bus cycle, Synchronous and asynchronous transfer, Interrupt handling in PC, Parallel Port, RS – 232 interface, Serial port in PC, Serial I/O interface, Universal serial bus IEEE 1394, Bus Arbitration Techniques, Uni-bus and multi-bus architectures EISA Bus, VESA Bus.

Module V: Pipelining, Vector Processing and Multiprocessors

Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processors.

Multiprocessors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor Arbitration, Interprocessor Communication and Synchronization, Advanced computer architecture, Pentium and Pentinum – Pro, Power PC Architecture

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Morris Mano, Computer System Architecture, 3rd Edition 1999, Prentice-Hall of India Private Limited.
- Harry & Jordan, Computer Systems Design & Architecture, Edition 2000, Addison Wesley, Delhi.

- WIliam Stallings, Computer Organization and Architecture, 4th Edition-2000, Prentice-Hall of India Private Limited
- Kai Hwang-McGraw-Hill, Advanced Computer Architecture.
- Kai Hwang & Faye a Briggs, McGrew Hill, inc., Computer Architecture & Parallel Processing.
- John D. Carpinelli, Computer system Organization & Architecture, Edition 2001, Addison Wesley, Delhi

- John P Hayes, McGraw-Hill Inc, Computer Architecture and Organization.
- M. Morris Mano and Charles, Logic and Computer Design Fundamentals, 2nd Edition Updated, Pearson Education, ASIA.
- Hamacher, "Computer Organization," McGraw hill.
- Tennenbaum," Structured Computer Organization," PHI
- B. Ram, "Computer Fundamentals architecture and organization," New age international Gear C. w., "Computer Organization and Programming, McGraw hill

JAVA PROGRAMMING

Course Code: UCA 503 Credit Units: 03

Course Objective:

The objective is to impart programming skills used in this object oriented language java.

The course explores all the basic concepts of core java programming. The students are expected to learn it enough so that they can develop the web solutions like creating applets etc.

Course Contents:

Module I

Concepts of OOP, Features of Java, How Java is different from C++, Data types, Control Statements, identifiers, arrays, operators. Inheritance: Multilevel hierarchy, method overriding, Abstract classes, Final classes, String Class.

Module II

Defining, Implementing, Applying Packages and Interfaces, Importing Packages. Fundamentals, Types, Uncaught Exceptions, Multiple catch Clauses, Java's Built-in Exception.

Module III

Creating, Implementing and Extending thread, thread priorities, synchronization suspending, resuming and stopping Threads, Constructors, Various Types of String Operations. Exploring Various Basic Packages of Java: Java. lang, Java. util, Java.i.o

Module IV

Event handling Mechanism, Event Model, Event Classes, Sources of Events, Event Listener Interfaces AWT: Working with Windows, AWT Controls, Layout Managers

Module V

Applet Class, Architecture, Skeleton, Display Methods.

Swings: Japplet, Icons, labels, Text Fields, Buttons, Combo Boxes.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- JAVA The Complete Reference by Patrick Naughton & Herbert Schild, TMH
- Introduction to JAVA Programming a primar, Balaguruswamy.

- "Introduction to JAVA Programming" Daniel/Young PHI
- Jeff Frentzen and Sobotka, "Java Script", Tata McGraw Hill,1999

DATA WAREHOUSING AND DATA MINING

Course Code: UCA 504 Credit Units: 03

Course Objective:

To demonstrate new concepts of organizing data ware house & data mining technique to drive the useful information out of the piles of data. This course will expose students to the process of extracting patterns from large data sets by combining methods from statistics and artificial intelligence with database management

Course Contents:

Module I: Data Warehousing

An Introduction to data ware housing and characteristics of a data warehouse, various aspects of data marts. Data warehouse logical design: star schemas, fact tables, dimensions, other schemas, materialized, views, Data warehouse physical design: hardware and i/o considerations, parallelism, indexes.

Module II: On Line Analytical processing

OLTP and OLAP systems, Data Modelling, OLAP Tools, web OLAP, Decision support system. Developing a Data Ware house: Architectural strategies and Organization Issues, Design Considerations, Tools for Data Warehousing,

Module III: Data Mining

Data mining approaches and methods: concept description, classification, association rules, clustering, Mining complex types of data, Research trends in data warehousing and data mining. Objectives of Data Mining the Technical context for Data Mining, machine learning, decision support and computer technology.

Module IV: Data Mining Techniques and Algorithms

Process of data mining, Algorithms, Data base segmentation or clustering, predictive Modelling, Link Analysis, Data Mining Techniques, Automatic Cluster Detection, Decision trees and Neural Networks.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination. Att: Attendance

Text & References:

Text:

- "Mastering Data Mining: The Art and Science of Customer Relationship Management", by Berry and Lin off, John Wiley and Sons, 2001.
- "Data Ware housing: Concepts, Techniques, Products and Applications", by C.S.R. Prabhu, Prentice Hall of India, 2001.

- "Data Mining: Concepts and Techniques", J.Han, M.Kamber, Academic Press, Morgan Kanf man Publishers, 2001.
- "Data Mining", by Pieter Adrians, Dolf Zantinge, Addison Wesley, 2000.
- "Data Mining with Microsoft SQL Server", by Seidman, Prentice Hall of India, 2001.

SOFTWARE ENGINEERING LAB

Course Code: UCA 521 Credit Units: 01

Software Required: Rational Rose

Assignments will be provided for the following:

• Use of Rational Rose for visual modeling.

• Creating various UML diagrams such as use case, sequence, collaboration, activity, state diagram, and class diagrams.

Examination Scheme:

	IA EE			' H'	
A	PR	LR	V	PR	V
5	10	10	5	35	35

COMPUTER ARCHITECTURE LAB

Course Code: UCA 522 Credit Units: 01

Course Contents:

S. NO.	NAME OF EXPERIMENTS	EQUIPMENT REQUIRED
	Part – A	_
1)	Design 4 bit combinational circuit shifter for left right and circular shift (using MUX).	Digital trainer kit with P/S
2)	To design a BCD adder (4 bit)	IC Name
3)	To design combinational circuit that performs following logic operations.	4 bit binary adder – 7483
	AND, OR, XOR, NOT using MUX.	Decoder (2 x 4) -
4)	Design a 4 bit combinational circuit decrementer using 4 full adder circuit.	74139 MUX (2 x 1) Quad –
5)	Transfer of Data from different registers to a common by using MUX.	74157 MUX (4 x 1) Dual –
6)	Transfer of data from different registers to a common bus by using decoders and tristate buffers.	74153 Register (4 bit) –
7)	Verify arithmetic operations by using MUX and full adders	74195
8)	Transfer of data from one register to another register by using bus. Part - B	Bidirectional – 74194 RAM – 7489
	(Experiments based on PC trainer kit)	
9)	Write a program to initialise CRT controlled and displays a pass message on screen.	AND, OR, NOT, XOR, GATE
10)	Write a program to transmit a character and display it on a video monitor.	AND – 7408 OR – 7432
11)	Write a program to initialise key board and display a scan code of the key pressed in seven segment display.	NOT – 7404 XOR – 7486
12)	Write a program to generate beeps of different frequencies as generated at the time of reset.	NAND – 7400
13)	Write a program to initialise printer on a dual display cared at address O36C and print data from a specified address.	WIRE (SINGLE CORE THICK)
14)	Write a program to refresh dynamic memory of the PC and read	- /
,	back from the same memory.	LED'S (RED, GREEN, YELLOW)
		WIRE CUTTER
		PC TRAINER
		48 channel logic state analyzer

Examination Scheme:

]	E	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

JAVA PROGRAMMING LAB

Course Code: UCA 523 Credit Units: 01

Software Required: JDK1.7

Assignments will be provided for the following:

 Java programs using classes & objects and various control constructs such as loops etc, and data structures such as arrays, structures and functions

- Java programs for creating Applets for display of images and texts.
- Programs related to Interfaces & Packages.
- Input/Output and random files programs in Java.
- Java programs using Event driven concept.
- Programs related to network programming.

Examination Scheme:

	IA				E
A	PR	LR	V	PR	V
5	10	10	5	35	35

DATA WAREHOUSING AND DATA MINING LAB

Course Code: UCA 524 Credit Units: 01

Course Contents:

Software Required: Informatica Tool, Cognos, Todd.

Assignments:

1. Write a program to implement text mining.

- 2. Write a program to implement web mining.
- 3. Write a program to develop snowflake schema.
- 4. Write a program to develop the tree schema with the help of binary tree.
- 5. Write a program to implement BFS and DFS with respect to 2-D modeling.
- 6. Write a program to implement the basic step of informatics tool.
- 7. Write a Program to implement the K-means algorithm
- 8. Write a Program to implement PAM K-medoids algorithm
- 9. Write a Program to implement AGNES hierarchical clustering
- 10. Do the compare between K-Means, K-Medoid, hierarchical clustering Results

Examination Scheme:

IA				EE	
A	PR	LR	V	PR	V
5	10	10	5	35	35

PRACTICAL TRAINING - I

Course Code: UCA 550 Credit Units: 06

Course Objective:

The objective of this course is to provide practical training on some live projects that will increase capability to work on actual problem in industry. This training may undergo in an industrial environment or may be an in house training on some latest software which is in high demand in market. This training will be designed such that it will useful for their future employment in industry.

Examination Scheme:

Total	100
Presentation	25
Viva	15
Training Report	40
Feedback from industry/work place	20

E-COMMERCE AND ERP

Course Code: UCA 607
Course Objective:

This course examines the evolution of enterprise resource planning (ERP) systems - from internally focused client/server systems to externally focused e-business. This class studies the types of issues that managers will need to consider in implementing cross-functional integrated ERP systems. The objective of this course is to make students aware of the potential and limitations of ERP systems. This objective will be reached through hands-on experience, case studies, lectures, guest speakers and a group project. The course would equip students with the basics of E-Commerce, technologies involved with it and various issues associated with.

Course Contents:

Module I: Introduction and Concepts

Networks and commercial transactions - Internet and other novelties; Networks and electronic transactions today, Model for commercial transactions; Internet environment - internet advantage, world wide web and other internet sales venues; Online commerce solutions.

Security Technologies: Why is internet insecure? A brief introduction to Cryptography; Public key solution. Digital payment systems; First virtual internet payment system; cyber cash model Operational process of Digicash, Ecash Trail; Using Ecash; Smart cards; Electronic Data Interchange: Its basics; EDI versus Internet and EDI over Internet.

Module II: Introduction ERP

An Overview, Enterprise-An Overview, Benefits of ERP, ERP and Related Technologies, Business Process Reengineering (BPR), Data Warehousing, Data Mining, On-line Analytical Processing (OLAP), Supply Chain Management

Module III: ERP Implementation

To be or not to be, ERP Implementation Lifecycle, Implementation Methodology, Not all Packages are Created Equal!, ERP Implementation-The Hidden Costs, Organizing the Implementation, Vendors, Consultants and Users, Contracts with Vendors, Consultants and Employees, Project Management and Monitoring, After ERP Implementation.

Module IV: The Business Modules

Business Modules in an ERP Package, Finance, Manufacturing (Production), Human Resources, Plant Maintenance, Materials Management, Quality Management, Sales and Distribution

Module V: The ERP Market

ERP Market Place, SAP AG, PeopleSoft, Baan Company, JD Edwards World Solutions Company, Oracle Corporation, QAD, System Software Associates, Inc. (SSA)

ERP-Present and Future

Turbo Charge the ERP System, Enterprise Integration Applications (EIA), ERP and E-Commerce, ERP and Internet, Future Directions in ERP, Appendices"

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- S. Sadagopan, "Enterprise Resource Planning", Tata McGraw Hill 2000
- Bajaj, Kamlesh K. and Nag, Debjani, E-Commerce : The Cutting Edge of Business, Tata McGraw-Hill Publishing Company

- Alexis Leon, "Enterprise Resource Planning", Tata McGraw Hill 2001
- Loshin, Pete and Murphy, Paul, *Electronic Commerce*, Second edition, 1990, Jaico Publishing House, Mumbai.

VHDL PROGRAMMING

Course Code: UCA 506 Credit Units: 03

Course Objective:

VHDL is commonly used as a design-entry language for field-programmable gate arrays and application-specific integrated circuits in electronic design automation of digital circuits. The course aims to discuss the syntax of the language to model a digital system.

Course Contents:

Module I

Fundamental VHDL Units, LIBRARY Declarations, ENTITY, ARCHITECTURE, Introductory Examples, Specification of combinational systems using VHDL, Introduction to VHDL, Basic language element of VHDL, Behavioural Modeling, Data flow modeling, Structural modeling, Subprograms and overloading, VHDL description of gates.

Module II

Data Types; Pre-Defined Data Types, User-Defined Data Types, Subtypes, Arrays, Port Array, Records, Signed and Unsigned Data Types, Data Conversion

Module III: Sequential codes

PROCESS: Signals and Variables, IF, WAIT, CASE, LOOP, CASE versus IF, CASE versus WHEN, Bad Clocking, Using Sequential Code to Design Combinational Circuits

Description and design of sequential circuits using VHDL,

Module IV

Standard combinational modules, Design of a Serial Adder with Accumulator, State Graph for Control Network, design of a Binary Multiplier, Multiplication of a Signed Binary Number, Design of a Binary Divider.

Module V

Micro programmed Controller, Structure of a micro programmed controller, Basic component of a micro system, memory subsystem. Overview of PAL, PLA, FPGA, CPLD.

Examination Scheme:

Weightage (%) 5 10 8 7 70	Components	A	CT	S/V/Q	HA	EE
reigntage (70)	Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- J. Bhaskar, "A VHDL Primer", Addison Wesley, 1999.
- Volnei A. Padroni, "Circuit Design with VHDL."
- M. Ercegovac, T. Lang and L.J. Moreno, "Introduction to Digital Systems", Wiley, 2000
- C. H. Roth, "Digital System Design using VHDL", Jaico Publishing, 2001

- VHDL Programming by Examples by Douglas L. Perry, TMH, 2000
- Hardware Description Languages by Sumit Ghose, PHI, 2000
- The Designer Guide to VHDL by P.J. Ashendern; Morgan Kaufmann Pub. 2000
- Digital System Design with VHDL by Mark Zwolinski; Prentice Hall Pub. 1999
- Designing with FPGA & CPLDs by Zeidman; CMP Pub. 1999
- HDL Chip Design by Douglas J. Smith; Doone Pub. 2001

VHDL PROGRAMMING LAB

Course Code: UCA 526 Credit Units: 01

Software Required: Mentor Graphics

Topics covered in lab will include:

• Designing Basic Gates.

Designing Combinational circuits like adder, multiplexer, PLA

• Designing Sequent ional Circuits like flip-flops, counters, registers.

Examination Scheme:

	IA			H,	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

COMMUNICATION SKILLS - III

Course Code: BCS 505 Credit Units: 01

Course Objective:

To equip the participant with linguistic skills required in the field of science and technology while guiding them to excel in their academic field.

Course Contents:

Module I

Reading Comprehension Summarizing Paraphrasing

Module II

Essay Writing Dialogue Report

Module III

Writing Emails Brochure Leaflets

Module IV: Introduction to Phonetics

Vowels Consonants Accent and Rhythm Accent Neutralization Spoken English and Listening Practice

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD – Group Discussion

GP - Group Presentation

Text & References:

- Effective English for Engineering Students, B Cauveri, Macmillan India
- Creative English for Communication, Krishnaswamy N, Macmillan
- A Textbook of English Phonetics, Balasubramanian T, Macmillan

BEHAVIOURAL SCIENCE - V (GROUP DYNAMICS AND TEAM BUILDING)

Course Code: BSS 501 Credit Units: 01

Course Objective:

To inculcate in the students an elementary level of understanding of group/team functions. To develop team spirit and to know the importance of working in teams.

Course Contents:

Module I: Group formation

Definition and Characteristics Importance of groups Classification of groups Stages of group formation Benefits of group formation

Module II: Group Functions

External Conditions affecting group functioning: Authority, Structure, Org. Resources, Organizational policies etc.

Internal conditions affecting group functioning: Roles, Norms, Conformity, Status, Cohesiveness, Size, Intergroup conflict.

Group Cohesiveness and Group Conflict

Adjustment in Groups

Module III: Teams

Meaning and nature of teams
External and internal factors effecting team
Building Effective Teams
Consensus Building
Collaboration

Module IV: Leadership

Meaning, Nature and Functions Self leadership Leadership styles in organization Leadership in Teams

Module V: Power to empower: Individual and Teams

Meaning and Nature
Types of power
Relevance in organization and Society

Module VI: End-of-Semester Appraisal

Viva based on personal journal Assessment of Behavioural change as a result of training Exit Level Rating by Self and Observer

Text & References:

- Organizational Behaviour, Davis, K.
- Hoover, Judhith D. Effective Small Group and Team Communication, 2002, Harcourt College Publishers
- Dick, Mc Cann & Margerison, Charles: Team Management, 1992 Edition, viva books
- Bates, A. P. and Julian, J.: Sociology Understanding Social Behaviour
- Dressers, David and Cans, Donald: The Study of Human Interaction
- Lapiere, Richard. T Social Change
- Lindzey, G. and Borgatta, E: Sociometric Measurement in the Handbook of Social Psychology, Addison Welsley, US.
- Rose, G.: Oxford Textbook of Public Health, Vol.4, 1985.
- LaFasto and Larson: When Teams Work Best, 2001, Response Books (Sage), New Delhi
- J William Pfeiffer (ed.) Theories and Models in Applied Behavioural Science, Vol 2, Group (1996); Pfeiffer & Company
- Smither Robert D.; The Psychology of Work and Human Performance, 1994, Harper Collins College Publishers

FRENCH - V

Course Code: FLF 501 Credit Units: 02

Course Objective:

To furnish some basic knowledge of French culture and civilization for understanding an authentic document and information relating to political and administrative life

Course Contents:

Module D: pp. 131 – 156 Unités 10,11

Contenu lexical: Unité 10: Prendre des décisions

- 1. Faire des comparaisons
- 2. décrire un lieu, le temps, les gens, l'ambiance
- 3. rédiger une carte postale

Unité 11: faire face aux problèmes

- 1. Exposer un problème.
- 2. parler de la santé, de la maladie
- 3. interdire/demander/donner une autorisation
- 4. connaître la vie politique française

Contenu grammatical:

- 1. comparatif comparer des qualités/ quantités/actions
- 2. supposition : Si + présent, futur
- 3. adverbe caractériser une action
- 4. pronom "Y"

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre : Campus: Tome 1

GERMAN - V

Course Code: FLG 501 Credit Units: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Genitive case

Genitive case – Explain the concept of possession in genitive Mentioning the structure of weak nouns

Module II: Genitive prepositions

Discuss the genitive propositions and their usage: (während, wegen, statt, trotz)

Module III: Reflexive verbs

Verbs with accusative case Verbs with dative case Difference in usage in the two cases

Module IV: Verbs with fixed prepositions

Verbs with accusative case
Verbs with dative case
Difference in the usage of the two cases

Module V: Texts

A poem 'Maxi' A text Rocko

Module VI: Picture Description

Firstly recognize the persons or things in the picture and identify the situation depicted in the picture; Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - V

Course Code: FLS 501 Credit Units: 02

Course Objective:

To enable students acquire working knowledge of the language; to give them vocabulary, grammar, voice modulations/intonations to handle everyday Spanish situations with ease.

Course Contents:

Module I

Revision of earlier semester modules

Module II

Future Tense

Module III

Presentations in English on Spanish speaking countries'

Culture

Sports

Food

People

Politics

Society

Geography

Module IV

Situations:

En el hospital

En la comisaria

En la estacion de autobus/tren

En el banco/cambio

Module V

General revision of Spanish language learnt so far.

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• Español Sin Fronteras, Greenfield

CHINESE – V

Course Code: FLC 501 Credit Units: 02

Course Objective:

What English words come from Chinese? Some of the more common English words with Chinese roots areginseng, silk, dim sum, fengshui, typhoon, yin and yang, T'al chi, kung-fu. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Dialogue practice

Observe picture and answer the question.

Pronunciation and intonation.

Character writing and stroke order

Module II

Intonation

Chinese foods and tastes – tofu, chowmian, noodle, Beijing duck, rice, sweet, sour....etc. Learning to say phrases like – Chinese food, Western food, delicious, hot and spicy, sour, salty, tasteless, tender, nutritious, god for health, fish, shrimps, vegetables, cholesterol is not high, pizza, milk, vitamins, to be able to cook, to be used to, cook well, once a week, once a month, once a year, twice a week......

Repetition of the grammar and verbs taught in the previous module and making dialogues usingit.

Compliment of degree "de".

Module III

Grammar the complex sentence "suiran ... danshi...."

Comparison – It is colder today than it was yesterday.....etc.

The Expression "chule....yiwai". (Besides)

Names of different animals.

Talking about Great Wall of China

Short stories

Module IV

Use of "huozhe" and "haishi"
Is he/she married?
Going for a film with a friend.
Having a meal at the restaurant and ordering a meal.

Module V

Shopping – Talking abut a thing you have bought, how much money you spent on it? How many kinds were there? What did you think of others?

Talking about a day in your life using compliment of degree "de". When you get up? When do you go for class? Do you sleep early or late? How is Chinese? Do you enjoy your life in the hostel?

Making up a dialogue by asking question on the year, month, day and the days of the week and answer them.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• "Elementary Chinese Reader" Part-II Lesson 39-46

ADVANCED COMPUTER ARCHITECTURE

Course Code: UCA 601 Credit Units: 03

Course Objective:

With increase in availability of system resources, concept of parallel architecture has obtained immense popularity. This course provides a comprehensive study of scalable and parallel computer architectures for achieving a proportional increase in performance with increasing system resources. In this course we have discussed the theory, technology, architecture (hardware) and software aspects of parallel computer and Vector computers.

Course Contents:

Module I: Parallel computer models

The state of computing, Multiprocessors and multicomputers, Multivector and SIMD computers, Architectural development tracks

Program and network properties: Conditions of parallelism, Data and resource dependences, Hardware and software parallelism, Program partitioning and scheduling, Grain size and latency, Program flow mechanisms, Control flow versus data flow, Data flow architecture, Demand driven mechanisms, Comparisons of flow mechanisms

Module II: System Interconnect Architectures

Network properties and routing, Static interconnection networks, Dynamic interconnection Networks, Multiprocessor system interconnects, Hierarchical bus systems, Crossbar switch and multiport memory, Multistage and combining network.

Module III: Processors and Memory Hierarchy

Advanced processor technology, Instruction-set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar Processors, VLIW Architectures, Vector and Symbolic processors

Memory Technology: Hierarchical memory technology, Inclusion, Coherence and Locality, Memory capacity planning, Virtual Memory Technology

Module IV: Backplane Bus System

Backplane bus specification, Addressing and timing protocols, Arbitration transaction and interrupt, Cache addressing models, Direct mapping and associative caches.

Pipelining: Linear pipeline processor, Nonlinear pipeline processor, Instruction pipeline design, Mechanisms for instruction pipelining, Dynamic instruction scheduling, Branch handling techniques, Arithmetic Pipeline Design, Computer arithmetic principles, Static arithmetic pipeline, Multifunctional arithmetic pipelines

Module V: Vector Processing Principles

Vector instruction types, Vector-access memory schemes.

Synchronous Parallel Processing: SIMD Architecture and Programming Principles, SIMD Parallel Algorithms, SIMD Computers and Performance Enhancement

Examination Scheme:

Weightage (%) 5 10 8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

Kai Hwang, "Advanced computer architecture"; TMH, 2000.

- J.P. Hayes, "computer Architecture and organization", MGH, 1998.
- M.J Flynn, "Computer Architecture, Pipelined and Parallel Processor Design", Narosa Publishing, 1998.

- D.A. Patterson, J.L. Hennessy, "Computer Architecture: A quantitative approach", Morgan Kauffmann, 2002.
- Hwang and Briggs, "Computer Architecture and Parallel Processing"; MGH, 2000.

SYSTEM PROGRAMMING

Course Code: UCA 602 Credit Units: 03

Course Objective:

This course provides knowledge to design various system programs.

Course Contents:

Module I: Introduction

Definition, Evolution, Components, Editors: Introduction to system Programming Line editor, Full screen editor and multi window editor. Case study MS-Word, DOS Editor and vi editor.

Module II: Assemblers

First pass and second pass of assembler and their algorithms. Assemblers for CISC Machines: case study x85 & x86 machines.

Module III: Compilers

Prototype.

Introduction to various translators. Various phases of compiler. Introduction to Grammars and finite automata. Bootstrapping for compilers. Lexical Analysis, syntax analysis, Intermediate Code Generation, Code optimization techniques, Code generation. Case study: LEXX and YACC. Design of a compiler in C++ as

Module IV: Debuggers, Loaders and Linkers

Introduction to various debugging techniques. Case study: Debugging in Turbo C++ IDE. Linkers and Loaders Concept of linking. Case study of Linker in x86 machines. Loading of various loading schemes.

Module V: Operating System

Booting techniques and sub-routines. Design of kernel and various management for OS. Design of Shell and other utilities, (Overview of Unix OS, Difference Between Unix and Linux, Commands in Unix.)-changes made

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Donovan J.J., Systems Programming, New York, Mc-Graw Hill, 1972.
- Dhamdhere, D.M., Introduction to Systems Software, Tata Mc-Graw Hill 1996.

References:

• Aho A.V. and J.D. Ullman Principles of compiler Design Addison Wesley/ Narosa 1985.

ADVANCED NETWORKING

Course Code: UCA 603 Credit Units: 03

Course Objective:

The objective here is to acquaint the students with the application of networking. Detail description of the various TCP/IP protocols and the working of ATM and its performance, Network security and authentication, and various algorithms related to it has been dealt, to get a practical approach.

Course Contents:

Module I: TCP/IP Protocol

Layered protocols, internet Addressing, mapping internet address to physical address, internet protocol, OSPF, RIP, RARP, BOOTP, DHCP, BGP, ARP, IP, Ipv6, ICMP

Transport protocols: UDP, TCP and SNMP

Module II: Connection oriented networks

Frame relay, B-ISDN, ATM protocol stack, ATM switching, internetworking with ATM Networks, traffic management in ATM.

Module III: High Speed LAN

LAN Ethernet, fast Ethernet, gigabit Ethernet, FDDI, DSL, ADSL

Module IV: Wireless communication

Wireless networks, wireless channels, channel access, network architecture, IEEE 802.11, bluetooth

Module V: Network Analysis and Modeling

Queuing theory, modeling network as a graph, network management system and standard

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- High performance communication networks by: J. Walrand & Pravin Varaiya, Morgan Kaufman, 1999.
- Internetworking with TCP/IP Vol.1: Principles, Protocols, and Architecture (4th Edition) by Douglas E.
 Comer
- ATM networks: Concepts, Protocols, Applications by: Handel, Addision Wesseley.
- Cryptography & Networks Security Stallings, William 3rd edition

- Computer networks: Tanenbaum, Andrew S, Prentice Hall
- Data communication & networking: Forouzan, B. A.
- Computer network protocol standard and interface Uyless, Black

ADVANCED JAVA PROGRAMMING

Course Code: UCA 604 Credit Units: 03

Course Objective:

The objective is to equip the students with the advanced feature of contemporary java which would enable them to handle complex programs relating to managing data and processes over the network. The major objective of this course is to provide a sound foundation to the students on the concepts, precepts and practices, in a field that is of immense concern to the industry and business.

Course Contents:

Module I

Introduction to Java RMI, RMI services, RMI client, Running client and server, Introduction of Swing, Swing Components, Look and Feel for Swing Components, Introduction to Multimedia Programming.

Module II

ODBC and JDBC Drivers, Connecting to Database with the java.sql Package, Using JDBC Terminology; Evolving Nature of Area

Module III

Introduction to Servlets, Servlet Life Cycle, Servlet based Applications, Servlet and HTML. JSP: Introduction to JSP, JSP implicit objects, JSP based Applications

Module IV

Enterprise Java Beans:-EJB roles—EJB Client-Object -container-Transaction Management—implementing a Basic EJB Object-Implementing session Beans-Implementing Entity Beans-Deploying an enterprise Java Beans Object-Changes in EJB1.1 specification.

Module V

The Model-View-Controller Architecture What is Struts, Struts Tags, Creating Beans, Other Bean Tags, Bean Output, Creating HTML Forms, The Action Form class The Action class, Simple Struts: a simple Struts application

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Java 2 Unleashed (Techmedia SAMS), Jamie Jaworski
- Professional Java Server Programming (a Press), Allamaraju
- Developing Java Servlets (Techmedia SAMS), James Goodwill sing Java 1.2 Special Edition (PHI), Webber

- David Flanagan, Jim Parley, William Crawford & Kris Magnusson, Java Enterprise in a nutshell A desktop Quick reference - O'REILLY, 2003
- Stephen Ausbury and Scott R. Weiner, Developing Java Enterprise Applications, Wiley-2001
- Jaison Hunder & William Crawford, Java Servlet Programming, O'REILLY, 2002
- Dietal and Deital, "JAVA 2" PEARSON publication

MICROPROCESSORS

Course Code: UCA 605 Credit Units: 03

Course Objective:

This course deals with the systematic study of the Architecture and programming issues of 8085-microprocessor family. The aim of this course is to give the students basic knowledge of the above microprocessor needed to develop the systems using it.

Course Contents:

Module I: Introduction to Microcomputer Systems

Introduction to Microprocessors and microcomputers, Study of 8 bit Microprocessor, 8085 pin configuration, Internal Architecture and operations, interrupts, Stacks and subroutines, various data transfer schemes.

Module II: ALP and timing diagrams

Introduction to 8085 instruction set, advance 8085 programming, Addressing modes, Counters and time Delays, Instruction cycle, machine cycle, T-states, timing diagram for 8085 instruction.

Module III: Memory System Design & I/O Interfacing

Interfacing with 8085.Interfacing with input/output devices (memory mapped, peripheral I/O), Cache memory system. Study of following peripheral devices 8255, 8253, 8257, 8255, 8251.

Module IV: Architecture of 16-Bit Microprocessor

Difference between 8085 and 8086, Block diagram and architecture of 8086 family, pin configuration of 8086, Minimum mode & Maximum mode Operation. Internal architecture of 8086, Bus Interface Unit, Register Organization, Instruction Pointer, Stack & Stack pointer, merits of memory segmentation, Execution Unit, Register Organization.

Module V: Pentium Processors

.Internal architecture of 8087, Operational overview of 8087, Introduction to 80186, 80286, 80386 & 80486 processors, Pentium processor.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Ramesh. S. Gaonkar, "Microprocessor architecture Programming and Application with 8085" Penram International Publishing, 4th Edition
- B. Ram, "Fundamentals of microprocessors and microcomputer" Dhanpat Rai, 5th Edition.
- Douglas V Hall.

- M. Rafiquzzaman, "Microprocessor Theory and Application" PHI 10th Indian Reprint.
- Naresh Grover, "Microprocessor comprehensive studies Architecture, Programming and Interfacing" Dhanpat Rai, 2003.
- Gosh," 0000 to 8085" PHI.

SYSTEM PROGRAMMING LAB

Course Code: UCA 621 Credit Units: 01

Software Required: Turbo C++

Assignment will be provided for following:Practical application of TSR (Terminate and Stay Resident) Programming.

Examination Scheme:

]	H*	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

ADVANCED NETWORKING LAB

Course Code: UCA 622 Credit Units: 01

Equipments Required:

Switch, Network Cables, Patch Chord- Fiber optical and twisted pair cable, LAN cards, RJ-45 connectors

Routers, Modem, etc.

Software required: TURBO C++

Operating System: Linux/Windows Server

Course Contents:

• Configuring Routers

- Introduction to Socket programming
- Implementation of Socket Programming
- Troubleshoot common network failures
- Gaining Access to the Routers and Switches

Examination Scheme:

]	IA PR			E
A			V	PR	V
5	10	10	5	35	35

ADVANCED JAVA PROGRAMMING LAB

Course Code: UCA 623 Credit Units: 01

Programming Language: Java

- 1. WAP to display label on a frame with the help of JFrame
- 2. WAP to display six buttons on a panel using JFrame.
- 3. WAP. To display an image and a string in a label on the JFrame.
- 4. WAP that implement a JApplet that display a simple label
- 5. WAP that implement a JApplet and display the following frame
 - a. Customer name
 - b. Customer number
 - c. Age
 - d. Address
- 6. WAP to access a table Product Master from MS-Access using Java code.
- 7. WAP that implement a simple servlet program.
- 8. WAP for authentication, which validate the login-id and password by the servlet code.
- 9. WAP to connecting a database using user-id and password.
- 10. WAP to insert data into the database using the prepared statement.
- 11. WAP to read data from the database using the Resulset.
- 12. WAP to read data send by the client (HTML page) using servlet.
- 13. WAP to include a HTML page into a JSP page.
- 14. WAP to handle the JSPException.
- 15. WAP to read data send by a client (HTML page) using JSP.

Examination Scheme:

	IA PR LR V			E	E
A	PR	I R	V	PR	V
5	10	10	5	35	35

MICROPROCESSOR LAB

Course Code: UCA 624 Credit Units: 01

Course Contents:

- 1. To load the numbers 49H and 53H in the memory location 9510 and 9511
- 2. respectively and add the contents of memory location 9601
- 3. To write assembly language programming for 8 bit addition with and without carry.
- 4. To write assembly language programming for 8 bit subtraction with and without borrow.
- 5. To write assembly language programming for 8 bit multiplication and division.
- 6. To write assembly language programming for sorting an array of numbers in ascending and descending order.
- 7. To write assembly language programming with additional instructions.
- 8. To write and execute a program using stacks.
- 9. To study and program the programmable peripheral interface (8255) board.
- 10. To study and program the programmable interval timer (8253) board.
- 11. To study and program the programmable DMA controller (8257) board.
- 12. To study and program the programmable interrupt controller (8259) board.

Examination Scheme:

	IA PR LR V			EE	
A	PR	LR	V	PR	V
5	10	10	5	35	35

CLOUD COMPUTING

Course Code: UCA 606 Credit Units: 04

Course Objective:

Cloud Computing is considered one of the top five emerging technologies that will have a major impact on the quality of science and society over next 20 years. It provides a way to centralize the setup, implementation, maintenance, and management of integrated computation services to individual and corporate end users.

The objective of this course is to provide graduate students with the comprehensive knowledge of Cloud Computing concepts, technologies, architecture and applications by introducing and researching state-of-the-art in Cloud Computing fundamental issues, technologies, applications and implementations. Another objective is to expose the students to frontier areas of Cloud Computing and information systems, while providing sufficient foundations to enable further study and research.

Course Contents:

Module I: Systems Modeling, Clustering and virtualization:

Scalable Computing over the Internet, Technologies for Network based systems, System models for Distributed and Cloud Computing, Software environments for distributed systems and clouds, Performance, Security and Energy Efficiency

Module II: Virtual Machines and Virtualization of Clusters and Data Centers:

Implementation Levels of Virtualization, Virtualization Structures/ Tools and mechanisms, Virtualization of CPU, Memory and I/O Devices, Virtual Clusters and Resource Management, Virtualization for Data Center Automation.

Module III: Cloud Platform Architecture:

Cloud Computing and service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms, Inter Cloud Resource Management, Cloud Security and Trust Management. Service Oriented Architecture, Message Oriented Middleware.

Module IV: Cloud Programming and Software Environments:

Features of Cloud and Grid Platforms, Parallel & Distributed Programming Paradigms, Programming Support of Google App Engine, Programming on Amazon AWS and Microsoft Azure, Emerging Cloud Software Environments.

Module V: Cloud Resource Management and Scheduling:

Policies and Mechanisms for Resource Management Applications of Control Theory to Task Scheduling on a Cloud, Stability of a Two Level Resource Allocation Architecture, Feedback Control Based on Dynamic Thresholds. Coordination of Specialized Autonomic Performance Managers, Resource Bundling, Scheduling Algorithms for Computing Clouds, Fair Queuing, Start Time Fair Queuing, Borrowed Virtual Time, Cloud Scheduling Subject to Deadlines, Scheduling MapReduce Applications Subject to Deadlines.

Module VI: Storage Systems:

Evolution of storage technology, storage models, file systems and database, distributed file systems, general parallel file systems. Google file system., Apache Hadoop, BigTable, Megastore, Amazon Simple Storage Service(S3)

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	15	5	5	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Distributed and Cloud Computing, Kai Hwang, Geoffry C. Fox, Jack J. Dongarra MK Elsevier.
- Cloud Computing, Theory and Practice, Dan C Marinescu, MK Elsevier.
- Cloud Computing, A Hands on approach, Arshadeep Bahga, Vijay Madisetti, University Press

References:

• Cloud Computing, A Practical Approach, Anthony T Velte, Toby J Velte, Robert Elsenpeter, TMH Mastering Cloud Computing, Foundations and Application Programming, Raj Kumar Buyya, Christen vecctiola, S Tammarai selvi, TMH

COMMUNICATION SKILLS - IV

Course Code: BCS 601 Credit Units: 01

Course Objective:

To enhance the skills needed to work in an English-speaking global business environment.

Course Contents:

Module I: Business/Technical Language Development

Advanced Grammar: Syntax, Tenses, Voices

Advanced Vocabulary skills: Jargons, Terminology, Colloquialism

Individualised pronunciation practice

Module II: Social Communication

Building relationships through Communication Communication, Culture and Context Entertainment and Communication Informal business/ Technical Communication

Module III: Business Communication

Reading Business/ Technical press Listening to Business/ Technical reports (TV, radio) Researching for Business / Technology

Module IV: Presentations

Planning and getting started Design and layout of presentation Information Packaging Making the Presentation

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD – Group Discussion

GP - Group Presentation

- Business Vocabulary in Use: Advanced Mascull, Cambridge
- Business Communication, Raman Prakash, Oxford
- Business Communications, Rodgers, Cambridge
- Working in English, Jones, Cambridge
- New International Business English, Jones/Alexander, Cambridge

BEHAVIOURAL SCIENCE – VI (STRESS AND COPING STRATEGIES)

Course Code: BSS 601 Credit Units: 01

Course Objective:

To develop an understanding the concept of stress its causes, symptoms and consequences.

To develop an understanding the consequences of the stress on one's wellness, health, and work performance.

Course Contents:

Module I: Stress Meaning & Nature Characteristics Types of stress

Module II: Stages and Models of Stress
Stages of stress
The physiology of stress
Stimulus-oriented approach.
Response-oriented approach.
The transactional and interact ional model.
Pressure – environment fit model of stress.

Module III: Causes and symptoms of stress Personal Organizational Environmental

Module IV: Consequences of stress Effect on behaviour and personality Effect of stress on performance Individual and Organizational consequences with special focus on health

Module V: Strategies for stress management Importance of stress management Healthy and Unhealthy strategies Peer group and social support Happiness and well-being

Module VI: End-of-Semester Appraisal

Viva based on personal journal Assessment of Behavioural change as a result of training Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term	VIVA	Journal for
			Test (CT)		Success (JOS)
Weightage (%)	20	05	20	30	25

- Blonna, Richard; Coping with Stress in a Changing World: Second edition
- Pestonjee, D.M, Pareek, Udai, Agarwal Rita; Studies in Stress And its Management
- Pestonjee, D.M.; Stress and Coping: The Indian Experience
- Clegg, Brian; Instant Stress Management Bring calm to your life now

FRENCH - VI

Course Code: FLF 601 Credit Units: 02

Course Objective:

To strengthen the language of the students both in oral and written so that they can:

- i) express their sentiments, emotions and opinions, reacting to information, situations;
- ii) narrate incidents, events;
- iii) perform certain simple communicative tasks.

Course Contents:

Module D: pp. 157 – 168 – Unité 12

Unité 12: s'évader

- 1. présenter, caractériser, définir
- 2. parler de livres, de lectures
- 3. préparer et organiser un voyage
- 4. exprimer des sentiments et des opinions
- 5. téléphoner
- 6. faire une réservation

Contenu grammatical:

- 1. proposition relative avec pronom relatif "qui", "que", "où" pour caractériser
- 2. faire + verbe

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 1

GERMAN - VI

Course Code: FLG 601 Credit Units: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Adjective endings

Adjective endings in all the four cases discussed so far Definite and indefinite articles Cases without article

Module II: Comparative adverbs

Comparative adverbs as and like

Module III: Compound words

To learn the structure of compound words and the correct article which they take Exploring the possibility of compound words in German

Module IV: Infinitive sentence

Special usage of 'to' sentences called zu+ infinitive sentences

Module V: Texts

A Dialogue: 'Ein schwieriger Gast' A text: 'Abgeschlossene Vergangenheit'

Module VI: Comprehension texts

Reading and comprehending various texts to consolidate the usage of the constructions learnt so far in this semester.

Module VII: Picture Description

Firstly recognize the persons or things in the picture and identify the situation depicted in the picture; Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - VI

Course Code: FLS 601 Credit Units: 02

Course Objective:

To enable students acquire working knowledge of the language; to give them vocabulary, grammar, voice modulations/intonations to handle everyday Spanish situations in Present as well as in Present Perfect Tense with ease.

Course Contents:

Module I

Revision of the earlier modules

Module II

Present Perfect Tense

Module III

Commands of irregular verbs

Module IV

Expressions with Tener que and Hay que

Module V

En la embajada

Emergency situations like fire, illness, accident, theft

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Español, En Directo I A
- Español Sin Fronteras

CHINESE – VI

Course Code: FLC 601 Credit Units: 02

Course Objective:

Chinese emperor Qin Shi Huang – Ti who built the great wall of China also built a network of 270 palaces, linked by tunnels, and was so afraid of assassination that he slept in a different palace each night. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Dialogue practice

Observe picture and answer the question.

Pronunciation and intonation.

Character writing and stroke order.

Module II

Going out to see a science exhibition

Going to the theatre.

Train or Plane is behind schedule.

Indian Economy-Chinese Economy

Talking about different Seasons of the Year and Weather conditions. Learning to say phrases like-spring, summer, fall, winter, fairly hot, very cold, very humid, very stuffy, neither hot nor cold, most comfortable, pleasant etc.

Module III

Temperature – how to say – What is the temperature in May here? How is the weather in summer in your area? Around 30 degrees

Heating, air-conditioning

Is winter is Shanghai very cold?

Talking about birthdays and where you were born?

The verb "shuo" (speak) saying useful phrases like speak very well, do not speak very well, if speak slowly then understand if speak fast then don't understand, difficult to speak, difficult to write, speak too fast, speak too slow, listen and can understand, listen and cannot understand ... etc.

Tell the following in Chinese – My name is I was born in ... (year). My birthday is Today is ... (date and day of the week). I go to work (school) everyday. I usually leave home at . (O'clock). In the evening, I usually (do what)? At week end, I On Sundays I usually It is today.... It will soon be my younger sisters birthday. She was born in (year). She lives in (where). She is working (or studying)...... where... She lives in (where.)

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• Elementary Chinese Reader Part-2, 3; Lesson 47-54

ARTIFICIAL INTELLIGENCE

Course Code: UCA 701 Credit Units: 03

Course Objective:

To develop semantic-based and context-aware systems to acquire, organize process, share and use the knowledge embedded in multimedia content. Research will aim to maximize automation of the complete knowledge lifecycle and achieve semantic interoperability between Web resources and services. The field of Robotics is a multi disciplinary as robots are amazingly complex system comprising mechanical, electrical, electronic H/W and S/W and issues germane to all these.

Course Contents:

Module I: Problem solving and Scope of AI

Introduction to Artificial Intelligence. Applications- Games, theorem proving, natural language processing, vision and speech processing, robotics, expert systems. AI techniques- search knowledge, abstraction.

Problem Solving

State space search; Production systems, search space control: depth-first, breadth-first search. Heuristic search - Hill climbing, best-first search, branch and bound. Problem Reduction, Constraint Satisfaction End, Means-End Analysis.

Module II: Knowledge Representation

Knowledge Representation issues, first order predicate calculus, Horn Clauses, Resolution, Semantic Nets, Frames, Partitioned Nets, Procedural Vs Declarative knowledge, Forward Vs Backward Reasoning.

Module III: Understanding Natural Languages

Introduction to NLP, Basics of Syntactic Processing, Basics of Semantic Analysis, Basics of Parsing techniques, context free and transformational grammars, transition nets, augmented transition nets, Shanks Conceptual Dependency, Scripts, Basics of grammar free analyzers, Basics of sentence generation, and Basics of translation.

Module IV

Expert System: Need and justification for expert systems, knowledge acquisition, Case studies: MYCIN, RI. **Learning:** Concept of learning, learning automation, genetic algorithm, learning by inductions, neural nets. **Programming Language:** Introduction to programming Language, LISP and PROLOG.

Handling Uncertainties: Non-monotonic reasoning, Probabilistic reasoning, use of certainty factors, Fuzzy logic.

Module V: Introduction to Robotics

Fundamentals of Robotics, Robot Kinematics: Position Analysis, Dynamic Analysis and Forces, Trajectory Planning, Sensors and vision system.

Robot Programming languages & systems: Introduction, the three levels of robot programming, requirements of a robot programming language, problems peculiar to robot programming languages.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- E. Rich and K. Knight, "Artificial intelligence", TMH, 2nd ed., 1992.
- N.J. Nilsson, "Principles of AI", Narosa Publ. House, 1990.
- John J. Craig, "Introduction to Robotics", Addison Wesley publication
- Richard D. Klafter, Thomas A. Chmielewski, Michael Negin, "Robotic Engineering An integrated approach", PHI Publication
- Tsuneo Yoshikawa, "Foundations of Robotics", PHI Publication

- D.W. Patterson, "Introduction to AI and Expert Systems", PHI, 1992.
- Peter Jackson, "Introduction to Expert Systems", AWP, M.A., 1992.
- R.J. Schalkoff, "Artificial Intelligence an Engineering Approach", McGraw Hill Int. Ed., Singapore, 1992.
- M. Sasikumar, S. Ramani, "Rule Based Expert Systems", Narosa Publishing House, 1994.

CRYPTOGRAPHY AND NETWORK SECURITY

Course Code: UCA 702 Credit Units: 03

Course Objective:

Network Security was always important, but has gained significance with the increase of application of Internet associated e-commerce. Threat and compromise /Breach potentially increased with the introduction of the end user involment,communication and networking. Thus the course is introduced to make the student acquainted with the concepts and practices to make the network environment secure.

Course Contents:

Module I

Codes and Ciphers – Some Classifical systems – Statistical theory of cipher systems-Complexity theory of crypto systems – Stream ciphers, Block ciphers.

Stream Ciphers: Rotor based system – shift register based systems – Design considerations for stream ciphers – Cryptanalysis of stream ciphers – Combined encryption and encoding.

Block Ciphers – DES and variant, modes of use of DES.

Module II

Public key systems – Knacksack systems – RSK – Diffie Hellman Exchange – Authentication and Digital signatures, Elliptic curve based systems.

Module III

Network Security: Hash function – Authentication:

Protocols – Digital Signature standards.

Electronics Mail Security - PGP (Pretty Good Privacy) MIME, data Compression technique.

Module IV

IP Security: Architecture, Authentication Leader, Encapsulating security Payload - Key Management.

Web security: Secure Socket Layer & Transport Layer security, Secure electronics transactions, Firewalls Design principle, established systems.

Module V

Telecommunication Network architecture, TMN management layers, Management information Model, Management servicing and functions, Structure of management information and TMN information model.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

- William Stallings" Cryptography and Network Security: Principles and Practices" PHI
- "Applied Cryptography", Bruce Schiener

COMPILER CONSTRUCTION

Course Code: UCA 703 Credit Units: 03

Course Objective:

The objective is to make aware students the concepts of compiler designing. It is expected students have should knowledge on automata theory. This course includes various Lexical Analysis, parsing techniques and syntax directed translation.

Course Contents:

Module I: Introduction

Definition, functions of Compiler in Linux / Unix / TC etc environments, other associated terms e.g. Text formatter, Text Editors, Phases and Passes, FSM & RE's and their application to Lexical Analysis, Implementation of Lexical Analyzers, Lexical- Analyzer Generator, Lex – Compiler including case study, Formal Grammar and their application to Syntax Analysis, BNF Notation, YACC including case study. The Syntactic specification of Languages: CFG, Derivation and Parse Trees, Capabilities of CFG.

Module II: Basic Parsing Techniques

Parsers, Shift Reduce Parsing, Operator precedence parsing, topdown Parsing, Predictive Parsers.

Module III: Automatic Construction of efficient Parsers

LR Parsers, the canonical collection of LR(0) items, constructing SLR Parsing Tables, Constructing canonical LR Parsing tables and LALR parsing tables, An Automatic Parser Generator, Implementation of LR parsing

Tables, Constructing LALR sets of items.

Module IV: Syntax Directed Translation

Syntax directed Translation Schemes, Implementation of Syntax directed translators, Intermediate Code, Postfix notation, Parse Trees and Syntax Trees, Three address Code, Quadruple & Triples, Translation of Assignment Statements, Boolean expressions, Control Statements, Postfix Translation, Translation with a Top Down Parser, Array references in Arithmetic expressions, Procedure Calls, Declarations and Case statements Translations.

Symbol Tables

Data Structure for Symbol Tables, representing scope information. Run Time Administration: Implementation of simple Stack allocation scheme, storage allocation in block structured language.

Module V: Error detection and Recovery

Lexical phase errors, syntax phase errors, semantic errors Code Optimization: Loop optimization, the DAG representation of basic blocks, value numbers and Algebraic Laws, Global Data – Flow Analysis.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Alfread V. Aho, Ravi Sethi & J.D. Ullman, "Compiler Design", Addison Wesley
- Ullman, Principles of Compiler Design, Narosa publications.

- D.M. Dhamdhere, "Compiler Construction Principles & Practice", Macmillan India Ltd.
- Holub, "Compiler Design in C", PHI.
- Tremblay K.P & Sorenson P.G., "The Theory and practice of Compiler writing" McGraw Hill
- Waite W.N. and Goos G., "Compiler Construction" Springer Verlag.

INFORMATION STORAGE AND MANAGEMENT (EMC2)

Course Code: UCA 704 Credit Units: 03

Course Objective:

The course provides detailed knowledge, practical training and insight into the implementation and management of various storage technologies with a focus towards applying these technologies in an information lifecycle paradigm. This course focuses on the following key aspects:

- 1. The evolution of storage and implementation models
- 2. Storage devices principles including structure, host I/O processing, & core algorithms
- 3. Storage classes (SAN, NAS. CAS), interconnection protocols, and management principles
- 4. Storage network design principles
- 5. Networked storage capabilities (Snaps,mirroring, virtualization)
- 6. Backup, Business Continuity, and Disaster Recovery principles

Course Contents:

Module I: Introduction to Storage Technology

Data proliferation and the varying value of data with time & usage, Sources of data and states of data creation, Data center requirements and evolution to accommodate storage needs

Overview of basic storage management skills and activities, The five pillars of technology, Overview of storage infrastructure components, Evolution of storage, Information Lifecycle Management concept, Data categorization within an enterprise, Storage and Regulations

Module II: Storage Systems Architecture

Intelligent disk subsystems overview, Contrast of integrated vs. modular arrays, Component architecture of intelligent disk subsystems, Disk physical structure- components, properties, performance, and specifications, Logical partitioning of disks, RAID & parity algorithms, hot sparing, Physical vs. logical disk organization, protection, and back end management, Array caching properties and algorithms, Front end connectivity and queuing properties, Front end to host storage provisioning, mapping, and operation, Interaction of file systems with storage, Storage system connectivity protocols

Module III: Introduction to Networked Storage

JBOD, DAS, SAN, NAS, & CAS evolution, Direct Attached Storage (DAS) environments: elements, connectivity, & management

Storage Area Networks (SAN): elements & connectivity, Fibre Channel principales, standards, & network management principles, SAN management principles

Network Attached Storage (NAS): elements, connectivity options, connectivity protocols (NFS, CIFS, ftp), & management principles, IP SAN elements, standards (iSCSI, FCIP, iFCP), connectivity principles, security, and management principles,

Content Addressable Storage (CAS): elements, connectivity options, standards, and management principles, Hybrid Storage solutions overview including technologies like virtualization & appliances.

Module IV: Introduction to Information Availability

Business Continuity and Disaster Recovery Basics, Local business continuity techniques, Remote business continuity techniques, Disaster Recovery principles & techniques

Module V: Managing & Monitoring

Management philosophies (holistic vs. system & component), Industry management standards (SNMP, SMI-S, CIM), Standard framework applications, Key management metrics (thresholds, availability, capacity, security, performance), Metric analysis methodologies & trend analysis, Reactive and pro-active management best practices, Provisioning & configuration change planning, Problem reporting, prioritization, and handling techniques, Management tools overview

Module VI: Security & Virtualization

Storage Security (Importance of Information security, elements and attributes of security), Developing a storage security model (Restricting Access Path, Vulnerability Management, Understanding Vulnerabilities), Securing Data Storage (Storage Security domains, Risk assessment Methodology, Security elements, threats against applications, Controlling user access to data, threats again backup, recovery and archive)

Virtualization (Define virtualization, types of virtualization), Storage Virtualization (Storage functionality, Virtual storage, Comparison of virtualization architectures, challenges of storage virtualization), Block level virtualization, File level virtualization.

Case Studies and Labs on the Simulator

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

• Information Storage and Management, Wiley Publication ISBN: 978-81-265-2147-0

- Marc Farley Osborne, "Building Storage Networks", Tata McGraw Hill
- Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill

ARTIFICIAL INTELLIGENCE LAB

Course Code: UCA 721 Credit Units: 01

Course Contents:

Assignments will be provided for the following:

- Programming in LISP
- Programming in Prolog
- Programming for Robotics

Examination Scheme:

]	E	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

COMPILER CONSTRUCTION LAB

Course Code: UCA 722 Credit Units: 01

Programming Language: C/C++

List of Programs:

- 1. WAP to check whether string is accepted or not for entered grammar.
- 2. WAP to convert Infix to Postfix notation.
- 3. WAP to convert Infix to Prefix notation.
- 4. WAP to find no of Tokens in an expression.
- 5. WAP to convert Regular Expression to NFA.
- 6. WAP to convert NFA to DFA.
- 7. WAP to calculate LEADING and TRAILING of a grammar.
- 8. WAP calculate FIRST and FOLLOW of a grammar.
- 9. WAP to implement shift reduce parser.
- 10. WAP to implement top down parser.

Examination Scheme:

IA				H	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

PRACTICAL TRAINING - II

Course Code: UCA 750 Credit Units: 06

Course Objective:

The objective of this course is to provide practical training on some live projects that will increase capability to work on actual problem in industry. This training may undergo in an industrial environment or may be an in house training on some latest software which is in high demand in market. This training will be designed such that it will useful for their future employment in industry.

Examination Scheme:

Feedback from industry/work place	20
Training Report	40
Viva	15
Presentation	25
Total	100

SEMINAR

Course Code: UCA 760 Credit Units: 03

Course Objective:

Examination Scheme:

ADVANCED DBMS

Course Code: UCA 705 Credit Units: 03

Course Objective:

The objective of this course is designed to cover and impart knowledge of various aspects of a Data Base Management systems like, databases, different database models, how transaction is managed, query is processed and different types databases

Course Contents:

Module I: Object based databases

Introduction, OODM, OODB, OODBMS, ODMG, ORDBMS, ORDBMS design

Module II: Parallel and distributed databases

Parallel databases: Introduction, advantages and disadvantages, architecture, Parallel data processing and query parallelism.

Distributed databases: Introduction, Properties, types, advantages, disadvantages, architecture, design, query processing, concurrency control, recovery control

Module III: Data warehousing and data mining

Introduction, evolution of data warehouse concept, components, characteristics, benefits, limitations, dataware house architecture, datamarts, OLAP, data mining process, data mining knowledge discovery, goals of data mining, data mining tools and applications

Module IV: Advanced Normalization

Normal forms-INF, 2NF, 3NF, BCNF, 4NF, 5NF, join dependencies.

Module V: Emerging Database Technologies

Internet databases, digital libraries, multimedia databases, mobile databases, spatial databases and clustering based disaster proof databases.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

• "Database Systems Concepts, Design and Applications", 1st Ed., Pearson Ed.

- Date C. J., "An Introduction to Database Systems", 7th Ed., Narosa Publishing, 2004
- Elmsari and Navathe, "Fundamentals of Database Systmes", 4th Ed., A. Wesley, 2004
- Ullman J. D., "Principles of Database Systems", 2nd Ed., Galgotia Publications, 1999.

PROGRAMMING WITH ASP.NET

Course Code: UCA 706 Credit Units: 03

Course Objective:

To create web based applications using ASP.NET.

Course Contents:

Module I: Introduction to .NET technologies

Features of .NET, .NET Framework, CLR, MSIL, .NET class library, .NET Languages, CTS, assemblies, manifest, and metadata, What is ASP.NET?, Difference between ASP and ASP.NET.

Module II: Controls in ASP.NET

Overview of Dynamic Web page, Understanding ASP.NET Controls, Applications, Web servers, Installation of IIS. Web forms, web form controls -server controls, client controls. Adding controls to a web form, Buttons, Text Box, Labels, Checkbox, Radio Buttons, List Box. Adding controls at runtime. Running a web Application, creating a multiform web project. Form Validation: Client side validation, server Side validation, validation Controls: Required Field Comparison Range. Calendarcontrol, Ad rotator Control, Internet Explorer Control.

Module III: Overview of ADO.NET and XML

What is ADO.NET, from ADO to ADO.NET. ADO.NET architecture, Accessing Data using Data Adapters and Datasets, using Command & Data Reader, binding data to data bind Controls, displaying data in data grid, XML basics, attributes, fundamental XML classes: Document, text writer, text reader. XML validations, XML in ADO.NET, The XML Data Document.

Module IV: ASP.NET Applications

Creating, tracking, caching, error handling, Securing ASP.NET applications- form based applications, window based application.

Module V: Web services

Introduction, State management- View state, Session state, Application state, Building ASP.NET web services, working with ASP.NET applications, creating custom controls.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

• ASP.NET Unleashed by Stephen Walther, SAMS publications

- ASP.NET, Wrox Publications
- ASP.NET and VB.NET, Wrox Publication
- ASP.NET and C#.NET, Wrox publication.

DISTRIBUTED OPERATING SYSTEM

Course Code: UCA 707 Credit Units: 03

Course Objective:

This Subject provides students with an in-depth knowledge about the operating system. The former treats the standard principles of single processor system, including processes, synchronization, I/O, deadlocks, Memory Management, File Management systems, security and so on. This subject covers distributed operating system in detail, including communication process, file system and memory management synchronization and so on but this time in the context of distributed systems

Course Contents:

Module I: Introduction

Modes of communication in O.S., System Process, Interrupt Handling, Handlinf Systems calls, Protection of resources & Resources Management. Micro-Kernal Operating System.

Module II: Client Server Model

Introduction to Network Operating System and Distributed Operating System, Issue in the design of Distributed Operating System, Overview of Computer Networks.

Inter process communication, Linux, IPC Mechanism, Remote Procedure calls, RPC exception handling, security issues, RPC in Heterogeneous Environment (case study Linux RPC)

Module III: Synchronization in Distributed System

Clock Synchronization: Logical clocks, Physical clocks, clock synchronization algorithms, Mutual Exclusion, Election Algorithms, Deadlocks in Distributed Systems. Thrashing, Heterogeneous DSM, Resource Management(Load Balancing approach, Load Sharing approach), Process Management: process Migration, Thread.

Module IV: Distributed Shared Memory

Introduction to shared memory, consistency model, Page based Distributed Shared Memory, Shared –variable Distributed Memory, Object -based Distributed Memory.

Module V: Distributed File System

File models, File access, File sharing, file-caching, File Replication, fault Tolerance, Network File System, (case study, 8NFS on Linux Directory Services, Security in Distributed File system.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

- M. Beck et al Linux Kernal, Internal Addition Wesley, 1997.
- B. W. Kernighan and R Pide, The Unix Programming Environment Prentice Hall of India 2000.
- A. Silberschatz P.B Galvin Operating System Concept, John Wiley & Sons (Asia) 2000.
- Cox K, "Red Hat Linux Administrator's Guide". PHI (200).

OPERATIONAL RESEARCH

Course Code: UCA 708 Credit Units: 03

Course Objective:

In a rapidly changing environment an understanding is sought which will facilitate the choice and the implementation of more effective solutions, which, typically, may involve complex interactions among people, materials and money. Organizations may seek a very wide range of operational improvements – for example, greater efficiency, better customer service, higher quality or lower cost, Whatever the business, engineering aim, Operations Research can offer the flexibility and adaptability to provide objective help. This course introduces students to the principles of operational research.

Course Contents:

Module I: Linear Programming

Formulation of problem. Graphical and simplex method for maximization and minimization. Duality theory and sensitivity analysis.

Module II: Transportation Models

Stepping stone algorithm, MODI method and Vogel's Approximation Method (VAM) for selfing balanced, unbalanced transportation problems and problems of degeneracy and maximization.

Module III: Assignment Models

Assignment model for maximization and traveling salesman problems, Industrial Problems.

Module IV: Queuing Theory

Basic structured, Terminology, classification. Birth and death process. Sequencing. Processing in jobs through machines with the same processing order. Processing of 2 Jobs through machines with each having different processing order.

Module V: Network Models

Introduction to PERT and CPM. Fundamental concept of Network models and construction of network diagrams, PERT activity, time estimate. Critical path and project time duration, Probability of completing the project on or before specified time. Float of a activity.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

- HM Wagner, Principles of Operations Research, Prentice Hall
- PK Gupta and DS Hira, Operations Research, S Chand & Co
- Taha, Introduction to Operation Research
- F S Hiller and G I Liebermann, Introduction to Operation Research, Holden R

MOBILE COMPUTING

Course Code: UCA 709 Credit Units: 03

Course Objective:

The objective of this consortium is to shape and expand a full-scale and sound mobile computing system market. To achieve this, cooperation is required of interests related to communication (network), computer hardware/software, system integrators (including service providers), and the media.

Course Contents:

Module I: Introduction to Personal Communications Services (PCS)

PCS Architecture, Mobility management, Networks signaling.

Global System for Mobile Communication (GSM) system overview: GSM Architecture, Mobility management, Network signaling.

Module II: General Packet Radio Services (GPRS) & Wireless Application Protocol (WAP)

GPRS Architecture, GPRS Network Nodes.

Mobile Data Communication: WLANs (Wireless LANs) IEEE 802.11 standard, Mobile IP.

Wireless Application Protocol (WAP): The Mobile Internet standard, WAP Gateway and Protocols, wireless mark up Languages (WML).

Module III: Third Generation (3G) Mobile Services

Introduction to International Mobile Telecommunications 2000 (IMT 2000) vision, Wideband Code Division Multiple Access (W-CDMA), and CDMA 2000, Quality of services in 3G.

Wireless Local Loop(WLL): Introduction to WLL Architecture, wireless Local Loop Technologies.

Module IV: Global Mobile Satellite Systems

Global Mobile Satellite Systems; case studies of the IRIDIUM and GLOBALSTAR systems. Wireless

Module V: Enterprise Networks

Introduction to Virtual Networks, Blue tooth technology, Blue tooth Protocols. Advanced techniques in mobile computing.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- "Wireless and Mobile Networks Architectures", by Yi-Bing Lin & Imrich Chlamtac, John Wiley & Sons, 2001.
- "Mobile and Personal Communication systems and services", by Raj Pandya, Prentice Hall of India, 2001.

- "Guide to Designing and Implementing wireless LANs", by Mark Ciampa, Thomson learning, Vikas Publishing House, 2001.
- "Wireless Web Development", Ray Rischpater, Springer Publishing, 2000.
- "The Wireless Application Protocol", by Sandeep Singhal, Pearson Education Asia, 2000.
- "Third Generation Mobile Telecommunication systems", by P.Stavronlakis, Springer Publishers, 2001.

OBJECT ORIENTED ANALYSIS AND DESIGN

Course Code: UCA 710 Credit Units: 03

Course Objective:

Object-oriented analysis and design (OOAD) is a software engineering approach that models a system as a group of interacting objects. Each object represents some entity of interest in the system being modeled, and is characterized by its class, its state (data elements), and its behaviour. The course aims to discuss the static structure, dynamic behaviour, and run-time deployment of these collaborating objects.

Course Contents:

Module I: Object Oriented Design Fundamentals

The Object Model: Overview of Object Oriented system Development – Object Basic – Object – Oriented Systems Development Life Cycle.

Object Oriented Analysis: Methodologies Shaler / Meller, Coad / Yourdon, Rumbaugh et al.'s Object Modeling Technique; The Booch Methodology; The Jacobson et al.Methodologies; Patterns; Frameworks; The Unified Approach.

Module II: Unified Modeling Language

Introduction; Static and Dynamic Models; Why Modeling?; Introduction to the Unified Modeling Language; UML Diagrams; Static Diagram:

UML Class Diagram: Class, interface, package, Relationships between classes, UML Use Case Diagram; UML Dynamic Modeling (Behavioural Diagram); Implementation Diagrams; Model Management: Packages and Model Organization; UML Extensibility; UML Meta Model.

Module III: Object Oriented Analysis Process

Identifying use cases: Introduction; Why Analysis is a Difficult Activity; Business Object Analysis: Understanding the Business Layer; Use Case Driven Object Oriented Analysis: The Unified Approach; Business Process Modeling; Use Case Model; Developing Effective Documentation

Object Analysis: Classification: Introduction; classifications Theory; Approaches for Identifying Classes; Noun Phrase Approach; Common Class Patterns Approach; Use Case Driven Approach: Identifying Classes and Their Behaviours through Sequence/Collaboration Modeling; Classes, Responsibilities, and Collaborators.

Module IV: Identifying Object Relationships, Attributes, and Methods

Introduction; Associations; Super-Sub Class Relationships; A Part of Relationships Aggregation; Class responsibility: Identifying Attributes and Methods; Class Responsibility: Defining Attributes by Analyzing Use Cases and Other UML Diagrams; Object Responsibility: Methods and Messages

The Object oriented Design Process And Design Axioms: Introduction;

The ObjectOriented Design Process; ObjectOriented Design Axioms; Corollaries.

Module V: Designing Classes

Introduction; The ObjectOriented Design Philosophy; UML Object Constraint Language; Designing Classes: The Process; Class Visibility: Designing WellDefined Public, Private, and Protected Protocols; Designing Classes: Refining Attributes; Designing Methods and Protocols; Packages and Managing Classes.

View Layer: Designing Interface Objects: Introduction; User Interface Design as a Creative Process; Designing View Layer Classes; Macro Level Process: Identifying View Classes by Analyzing Use Cases; Micro Level Process.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- 'Object Oriented Systems Development Using the Unified Modeling Language', Ali Bahrami, Tata McGraw Hill International Editions, Computer Science Series.
- 'Object Oriented Analysis & Design with Applications', Grady Booch, 2nd Edition Pearson Education 1999.

- 'Unified Modeling Language Reference Manual', James Rumbaugh, Jacobson, Booch, PHI.
- 'The Unified Software Development Process', Jacobson et al., AW, 1999.
- 'Object Oriented Analysis and Design', Atul Kahate, Tata McGraw Hill Co Edition 2004.
- 'Object Oriented Software Engineering: Practical Software Development Using UML and JAVA' Timothy C. Lethbridge and Robert Langaniere, Tata McGraw Hill Co

GRID COMPUTING

Course Code: BTC 711 Credit Units: 03

Course Objective:

Grid computing (or the use of a *computational grid*) is applying the resources of many computers in a network to a single problem at the same time - usually to a scientific or technical problem that requires a great number of computer processing cycles or access to large amounts of data. The major objective of this course is to provide a sound foundation to the students on the concepts, percepts and practices in a field that is of immense concern to the industry and business.

Course Contents:

Module I: Introduction-Cluster to grid computing

Cluster computing models, Grid models, Mobile grid models, Applications.

Parset: System independent parallel programming on distributed systems: Motivation and introduction, Semantics of the parset construct, Expressing parallelism through parsets, Implementing parsets on a loosely coupled distributed system.

Anonymous remote computing model: Introduction, Issues in parallel computing on interconnected workstations, Existing distributed programming approaches, The arc model of computation, The two tired arc language constructs, Implementation

Module II: Integrating task parallelism with data parallelism

Introduction and motivation, A model for integrating task parallelism into data parallel programming platforms, Integration of the model into ARC, Design and implementation applications, performance analysis, guidelines for composing user programs, related work

Anonymous remote computing and communication model: Introduction, Location in dependent inter task communication with DP, DP model of iterative grid computations, Design and implementation of distributed pipes, Case study, and Performance analysis.

Module III: Parallel programming model on CORBA

Introduction, Existing works, notion of concurrency, system support implementation performance, sitability of CORBA: introspection.

Grid computing model: Introduction, a parallel computing model over grids, Design and implementation of the model, Performance studies, Related work.

Module IV: Introducing mobility into anonymous remote computing and communication model

Introduction, issues in mobile clusters and parallel computing on mobile clusters, moset overview, moset computation model, implementation, performance.

Distributed simulating annealing algorithms for job shop scheduling: Introduction, overview, distributed algorithms for job shop scheduling, implementation, results and observation.

Module V: Parallel Simulated Annealing algorithms

Introduction, Simulated annealing (SA) Technique, Clustering algorithm for simulated annealing (SA), Combination of genetic algorithm and simulated annealing (SA) algorithm

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

• "Grid Computing a Research Monograph" by D. Janakiram, Tata McGraw hill publications, 2005

- "Grid Computing: A Practical Guide to technology and Applications" by Ahmar Abbas, Charles River media – 2003.
- "Grid Computing" Joshy Joseph & Craig Fellenstein, Pearson Education

ADVANCE DBMS LAB

Course Code: UCA 721 Credit Units: 01

Software Required: Oracle 9i

Topics covered in lab will include:

- Database Design
- Data Definition (SQL)
- Data Retrieval (SQL)
- Data Modification (SQL)
- Views
- Triggers and Procedures
- PL\SQL
- Queries Using Object Oriented Approach.

Examination Scheme:

]	E	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

PROGRAMMING WITH ASP.NET LAB

Course Code: UCA 722 Credit Units: 01

Course Contents:

- Use of Controls in creating web pages
- Creating sessions
- Creating Custom controls
- Implementing security

Examination Scheme:

]	H.	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

DISTRIBUTED OPERATING SYSTEM LAB

Course Code: UCA 723 Credit Units: 01

Course Contents:

List of Assignment:

- 1. Write a program to display process id and parent id fro a child process and parent process. Parent should exit after the child exit.
- 2. Write a program to create client and provides time service .Server is parent process. Client should get time from server using pipes.
- 3. Write a program to count characters, words and lines
- Write a program to display real time of day after every 5 seconds, 10 times.
- 5. Write a program to show a parent that creates 4 childlike processes and waits for all children to exit.
- 6. Write a program that tests typing speed.
- 7. Write a programto implement SIGHUP, SIGHINT, SIGHQUIT in signals.
- 8. Write a programto implement the working of a Semaphore.
- 9. Write a program to create semaphores with semid.
- 10. Write a program to implement the working of pipes.

Examination Scheme:

]	E	E		
A	PR	LR	V	PR	V
5	10	10	5	35	35

OPERATIONAL RESEARCH LAB

Course Code: UCA 724 Credit Units: 01

Programming Language: C or C++

List of Experiments:

1. Implementation of Linear Programming.

- 2 Implementation of Simplex Problem.
- 3 Implementation of Assignment Problem.
- 4. Implementation of Transportation Problem.
- 5. Implementation of PERT and CPM problem.
- 6. Implementation of Sequencing Problem.

Examination Scheme:

	IA				E
A		l LR	V	PR	V
5	10	10	5	35	35

COMMUNICATION SKILLS - V

Course Code: BCS 701 Credit Units: 01

Course Objective:

To facilitate the learner with Academic Language Proficiency and make them effective users of functional language to excel in their profession.

Course Contents:

Module I

Introduction to Public Speaking Business Conversation Effective Public Speaking Art of Persuasion

Module II: Speaking for Employment

Types of Interview
Styles of Interview
Facing Interviews-Fundamentals and Practice Session
Conducting Interviews- Fundamentals and Practice Session
Question Answer on Various Dimensions

Module III

Resume Writing Covering Letters Interview Follow Up Letters

Module IV: Basic Telephony Skills

Guidelines for Making a Call Guidelines for Answering a Call

Module V: Work Place Speaking

Negotiations Participation in Meetings Keynote Speeches

Examination Scheme:

Components	CT1	CT2	CAF	V	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD – Group Discussion

GP – Group Presentation

- Jermy Comfort, Speaking Effectively, et.al, Cambridge
- Krishnaswamy, N, Creative English for Communication, Macmillan
- Raman Prakash, Business Communication, Oxford.
- Taylor, Conversation in Practice,

BEHAVIOURAL SCIENCE - VII (INDIVIDUAL, SOCIETY AND NATION)

Course Code: BSS 701 Credit Units: 01

Course Objective:

This course aims at enabling students towards:

Understand the importance of individual differences

Better understanding of self in relation to society and nation

Facilitation for a meaningful existence and adjustment in society

Inculcating patriotism and national pride

Course Contents:

Module I: Individual differences & Personality

Personality: Definition& Relevance

Importance of nature & nurture in Personality Development

Importance and Recognition of Individual differences in Personality

Accepting and Managing Individual differences (adjustment mechanisms)

Intuition, Jugement, Perception & Sensation (MBTI)

BIG5 Factors

Module II: Managing Diversity

Defining Diversity

Affirmation Action and Managing Diversity

Increasing Diversity in Work Force

Barriers and Challenges in Managing Diversity

Module III: Socialization

Nature of Socialization

Social Interaction

Interaction of Socialization Process

Contributions to Society and Nation

Module IV: Patriotism and National Pride

Sense of pride and patriotism

Importance of discipline and hard work

Integrity and accountability

Module V: Human Rights, Values and Ethics

Meaning and Importance of human rights

Human rights awareness

Values and Ethics- Learning based on project work on Scriptures like- Ramayana, Mahabharata, Gita etc.

Module VI: End-of-Semester Appraisal

Viva based on personal journal

Assessment of Behavioural change as a result of training

Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term Test (CT)	VIVA	Journal for Success (JOS)
Weightage (%)	20	05	20	30	25

Text & References:

Davis, K. Organizational Behaviour,

Bates, A. P. and Julian, J.: Sociology - Understanding Social Behaviour

Dressler, David and Cans, Donald: The Study of Human Interaction

Lapiere, Richard. T – Social Change

Lindzey, G. and Borgatta, E: Sociometric Measurement in the Handbook of Social Psychology, Addison -

Welsley, US.

Rose, G.: Oxford Textbook of Public Health, Vol.4, 1985.

Robbins O.B. Stephen; Organizational Behaviour

FRENCH - VII

Course Code: FLF 701 Credit Units: 02

Course Objective:

Revise the portion covered in the first volume, give proper orientation in communication and culture.

Course Contents:

Module A: Unités 1 – 3: pp. 06 - 46

Contenu lexical: Unité 1: Rédiger et présenter son curriculum vitae

Exprimer une opinion

Caractériser, mettre en valeur

Parler des rencontres, des lieux, des gens

Unité 2: Imaginer - Faire des projets

Proposer - conseiller

Parler des qualités et des défauts

Faire une demande écrite Raconter une anecdote Améliorer son image

Unité 3: Exprimer la volonté et l'obligation

Formuler des souhaits

Exprimer un manque/un besoin

Parler de l'environnement, des animaux, des catastrophes

naturelles

Contenu grammatical:

Le passé : passé composé/imparfait

Pronoms compléments directs/indirects, y/en (idées/choses)

Propositons relatives introduites par qui, que, où

Comparatif et superlatif Le conditionnel présent Situer dans le temps Féminin des adjectifs

La prise de paroles : expressions Le subjonctif : volonté, obligation

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 2

GERMAN - VII

Course Code: FLG 701 Credit Units: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Dass-Sätze

Explain the use of the conjunction "-that", where verb comes at the end of the sentence

Module II: Indirekte Fragesätze

To explain the usage of the "Question Pronoun" as the Relative Pronoun in a Relative Sentence, where again the verb falls in the last place in that sentence.

Module III: Wenn- Sätze

Equivalent to the conditional "If-" sentence in English. Explain that the verb comes at the end of the sentence.

Module IV: Weil-Sätze

Explain the use of the conjunction "because-" and also tell that the verb falls in the last place in the sentence.

Module V: Comprehension texts

Reading and comprehending various texts to consolidate the usage of the constructions learnt so far in this semester.

Module VI: Picture Description

Firstly recognize the persons or things in the picture and identify the situation depicted in the picture; Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - VII

Course Code: FLS 701 Credit Units: 02

Course Objective:

To enable students acquire working knowledge of the language; to give them vocabulary, grammar, expressions used on telephonic conversation and other situations to handle everyday Spanish situations with ease.

Course Contents:

Module I

Revision of earlier semester modules

Module II

Zodiac signs. More adjectives...to describe situations, state of minds, surroundings, people and places.

Module III

Various expressions used on telephonic conversation (formal and informal)

Module IV

Being able to read newspaper headlines and extracts (Material to be provided by teacher)

Module V

Negative commands (AR ending verbs)

Module VI

Revision of earlier sessions and introduction to negative ER ending commands, introduction to negative IR ending verbs

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

- Español En Directo I A, 1B
- Español Sin Fronteras
- Material provided by the teacher from various sources

CHINESE – VII

Course Code: FLC 701 Credit Units: 02

Course Objective:

The story of Cinderella first appears in a Chinese book written between 850 and 860 A.D. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Dialogue practice

Observe picture and answer the question.

About china part –I Lesson 1,2.

Module II

Pronunciation and intonation

Character Writing and stroke order.

Module III

Ask someone what he/she usually does on weekends? Visiting people, Party, Meeting, After work....etc.

Module IV

Conversation practice

Translation from English to Chinese and vise-versa.

Short fables.

Module V

A brief summary of grammar.

The optative verb "yuanyi".

The pronoun "ziji".

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• "Kan tu shuo hua" Part-I Lesson 1-7

ADVANCED DBMS

Course Code: UCA 801 Credit Units: 03

Course Objective:

The objective of this course is designed to cover and impart knowledge of various aspects of a Data Base Management systems like, databases, different database models, how transaction is managed, query is processed and different types databases

Course Contents:

Module I: Object based databases

Introduction, OODM, OODB, OODBMS, ODMG, ORDBMS, ORDBMS design

Module II: Parallel and distributed databases

Parallel databases: Introduction, advantages and disadvantages, architecture, Parallel data processing and query parallelism.

Distributed databases: Introduction, Properties, types, advantages, disadvantages, architecture, design, query processing, concurrency control, recovery control

Module III: Data warehousing and data mining

Introduction, evolution of data warehouse concept, components, characteristics, benefits, limitations, dataware house architecture, datamarts, OLAP, data mining process, data mining knowledge discovery, goals of data mining, data mining tools and applications

Module IV: Advanced Normalization

Normal forms-INF, 2NF, 3NF, BCNF, 4NF, 5NF, join dependencies.

Module V: Emerging Database Technologies

Internet databases, digital libraries, multimedia databases, mobile databases, spatial databases and clustering based disaster proof databases.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

• "Database Systems Concepts, Design and Applications", 1st Ed., Pearson Ed.

- Date C. J., "An Introduction to Database Systems", 7th Ed., Narosa Publishing, 2004
- Elmsari and Navathe, "Fundamentals of Database Systmes", 4th Ed., A. Wesley, 2004
- Ullman J. D., "Principles of Database Systems", 2nd Ed., Galgotia Publications, 1999.

SOFTWARE TESTING AND QUALITY ASSURANCE

Course Code: UCA 802 Credit Units: 03

Course Objective:

The goal of the coding or programming phase is to translate the design of the system produced during the design phase into code in a given programming language, which can be executed by a computer and that performs the computation specified by the design. Verification of the output of the coding phase is primarily indended for detecting errors introduced during this phase. That is, the goal of verification of the code produced is to show that the code is consistent with the design it is supposed to implement. Validation is the process of evaluating software at the end of the software development to ensure compliance with the software requirements. The aim of the course is to provide clear understanding of verification, validation and testing techniques.

Course Contents:

Module I: Introduction

Terminology; Evolving Nature of Area

Module II: V & V Limitations

Theoretical Foundations; Impracticality of Testing All data; Impracticality of Testing All Paths; No Absolute Proof of Correctness

Module III: The Role of V & V in Software Evolution

Types of Products, Requirements; Specifications, Designs, Implementations, Changes, V & V Objectives, Correctness, Consistency, Necessity, Sufficiency, Performance.

Module IV: Software V & V Approaches and their Applicability

Software Technical Reviews, Software Testing: Levels of Testing, Module, Integration, System, Regression, Testing Techniques and their Applicability, Functional Testing and Analysis, Structural Testing and Analysis, Error-Oriented Testing and Analysis, Hybrid Approaches, Integration Strategies, Transaction Flow Analysis, Stress Analysis, Failure Analysis, Concurrency Analysis, Performance Analysis, Proof of Correctness, Simulation and Prototyping, Requirements Tracing.

Module V: Software V & V Planning

Identification of V & V Goals, Selection of V & V Techniques: Requirements, Specifications, Designs, Implementations, Changes, Organizational Responsibilities, Development Organization, Independent Test Organization, Software Quality Assurance, Independent V & V Contractor, V & V Standards, Integrating V & V Approaches, Problem Tracking, Tracking Test Activities, Assessment.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- William Perry, "Effective Methods for Software Testing", John Wiley & Sons, New York, 1995.
- Louise Tamres, "Software Testing", Pearson Education Asia, 2002
- Robert V. Binder, "Testing Object-Oriented Systems-Models, Patterns and Tools", Addison Wesley, 1999.

References:

- Cem Kaner, Jack Falk, Nguyen Quoc, "Testing Computer Software", Second Edition, Van Nostrand Reinhold, New York, 1993.
- K.K. Aggarwal & Yogesh Singh, "Software Engineering", 2nd Ed., New Age International Publishers, New Delhi, 2005
- Boris Beizer, "Software Testing Techniques", Second Edition, Wiley-Dreamtech India, New Delhi, 2003
- Boris Beizer, "Black-Box Testing Techniques for Functional Testing of Software and Systems", John Wiley & Sons Inc., New York, 1995.

ADVANCE DBMS LAB

Course Code: UCA 821 Credit Units: 01

Software Required: Oracle 9i

Topics covered in lab will include:

- Database Design
- Data Definition (SQL)
- Data Retrieval (SQL)
- Data Modification (SQL)
- Views
- Triggers and Procedures
- PL\SQL
- Queries Using Object Oriented Approach.

Examination Scheme:

]	IA .		E	EE
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

SOFTWARE TESTING AND QUALITY ASSURANCE LAB

Course Code: UCA 822 Credit Units: 01

*Practical list for software testing and quality assurance

List of experiments:

- 1. Write a test case to test login window using manual testing
- 2. Write a test case to test triangle using manual testing
- 3. Write a test case to test valid mobile no using manual testing
- 4. Write a test case to test ATM machine no using manual testing
- 5. Write the script to test the "save" functionality of notepad using rational robot
- Write the script to test "find" functionality of notepad using rational robot
- Write the script to test "replace" functionality of notepad using rational robot 7.
- 8. Write the script to test "+" functionality of window calculator using rational robot 9. Write the script to test "*" functionality of window calculator using rational robot
- 10. Write the script to test "%" functionality of window calculator using rational robot
- 11. Write the script to test "/" functionality of window calculator using rational robot
- 12. Write the script to test login page of window using rational robot
- 13. Write the script to test Date field of window using rational robot
- 14. Write the script to test drop drown field of window using rational robot
- 15. Write the script to test hyperlink of web site using rational robot

Examination Scheme:

]	ÍA.		E	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

PROJECT

Course Code: UCA 860 Credit Units: 15

GUIDELINES FOR PROJECT FILE

Research experience is as close to a professional problem-solving activity as anything in the curriculum. It provides exposure to research methodology and an opportunity to work closely with a faculty guide. It usually requires the use of advanced concepts, a variety of experimental techniques, and state-of-the-art instrumentation. Research is genuine exploration of the unknown that leads to new knowledge which often warrants publication. But whether or not the results of a research project are publishable, the project should be communicated in the form of a research report written by the student.

Sufficient time should be allowed for satisfactory completion of reports, taking into account that initial drafts should be critiqued by the faculty guide and corrected by the student at each stage.

The File is the principal means by which the work carried out will be assessed and therefore great care should be taken in its preparation.

In general, the File should be comprehensive and include

A short account of the activities that were undertaken as part of the project;

A statement about the extent to which the project has achieved its stated goals.

A statement about the outcomes of the evaluation and dissemination processes engaged in as part of the project; Any activities planned but not yet completed as part of the project, or as a future initiative directly resulting from the project:

Any problems that have arisen that may be useful to document for future reference.

> Report Layout

The report should contain the following components:

> Title or Cover Page

The title page should contain the following information: Project Title; Student's Name; Course; Year; Supervisor's Name.

> Acknowledgements (optional)

Acknowledgment to any advisory or financial assistance received in the course of work may be given.

> \Abstract

A good "Abstract" should be straight to the point; not too descriptive but fully informative. First paragraph should state what was accomplished with regard to the objectives. The abstract does not have to be an entire summary of the project, but rather a concise summary of the scope and results of the project

> Table of Contents

Titles and subtitles are to correspond exactly with those in the text.

> Introduction

Here a brief introduction to the problem that is central to the project and an outline of the structure of the rest of the report should be provided. The introduction should aim to catch the imagination of the reader, so excessive details should be avoided.

Materials and Methods

This section should aim at experimental designs, materials used. Methodology should be mentioned in details including modifications if any.

> Results and Discussion

Present results, discuss and compare these with those from other workers, etc. In writing these section, emphasis should be given on what has been performed and achieved in the course of the work, rather than discuss in detail what is readily available in text books. Avoid abrupt changes in contents from section to section and maintain a lucid flow throughout the thesis. An opening and closing paragraph in every chapter could be included to aid in smooth flow.

Note that in writing the various secions, all figures and tables should as far as possible be next to the associated text, in the same orientation as the main text, numbered, and given appropriate titles or captions. All major equations should also be numbered and unless it is really necessary never write in "point" form.

> Conclusion

A conclusion should be the final section in which the outcome of the work is mentioned briefly.

> Future prospects

> Appendices

The Appendix contains material which is of interest to the reader but not an integral part of the thesis and any problem that have arisen that may be useful to document for future reference.

> References / Bibliography

This should include papers and books referred to in the body of the report. These should be ordered alphabetically on the author's surname. The titles of journals preferably should not be abbreviated; if they are, abbreviations must comply with an internationally recognised system.

Examples

For research article

Voravuthikunchai SP, Lortheeranuwat A, Ninrprom T, Popaya W, Pongpaichit S, Supawita T. (2002) Antibacterial activity of Thai medicinal plants against enterohaemorrhagic *Escherichia coli* O157: H7. *Clin Microbiol Infect*, **8** (suppl 1): 116–117.

For book

Kowalski, M. (1976) Transduction of effectiveness in *Rhizobium meliloti*. SYMBIOTIC NITROGEN FIXATION PLANTS (editor P.S. Nutman IBP), 7: 63-67

ASSESSMENT OF THE PROJECT FILE

Essentially, marking will be based on the following criteria: the quality of the report, the technical merit of the project and the project execution.

Technical merit attempts to assess the quality and depth of the intellectual efforts put into the project.

Project execution is concerned with assessing how much work has been put in.

The File should fulfill the following assessment objectives:

Range of Research Methods used to obtain information

Execution of Research

Data Analysis

Analyse Quantitative/ Qualitative information Control Quality

Draw Conclusions

Examination Scheme:

Dissertation 50 Viva Voce 50

Total 100

Visual Programming using VC++

Course Code: UCA 803 Credit Units: 03

Course Objective:

To make the students to understand the windows programming concepts including Microsoft Foundation Classes.

- To introduce the concepts of windows programming
- To introduce GUI programming using Microsoft Foundation Classes
- To enable the students to develop programs and simple applications using Visual C++

Course Contents:

Module I: Windows Programming

Windows environment – a simple windows program – windows and messages – creating the window – displaying the window – message loop – the window procedure – message processing – text output – painting and repainting – introduction to GDI – device context – basic drawing – child window controls

Module II: Visual C++ Programming – Introduction

Application Framework – MFC library – Visual C++ Components – Event Handling – Mapping modes – colors – fonts – modal and modeless dialog – windows common controls – bitmaps

Module III: The Document and View Architecture

Menus – Keyboard accelerators – rich edit control – toolbars – status bars – reusable frame window base class – separating document from its view – reading and writing SDI and MDI documents – splitter window and multiple views – creating DLLs – dialog based applications

Module IV: Activex and Object Linking and Embedding (Ole)

ActiveX controls Vs. Ordinary Windows Controls – Installing ActiveX controls – Calendar Control – ActiveX control container programming – create ActiveX control at runtime – Component Object Model (COM) – containment and aggregation Vs. inheritance – OLE drag and drop – OLE embedded component and containers – sample applications

Module V: Advanced Concepts

Database Management with Microsoft ODBC – Structured Query Language – MFC ODBC classes – sample database applications – filter and sort strings – DAO concepts – displaying database records in scrolling view – Threading – VC++ Networking issues – Winsock – WinInet – building a web client – Internet Information Server – ISAPI server extension – chat application – playing and multimedia (sound and video) files.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Charles Petzold, "Windows Programming", Microsoft press, 1996 (Unit I Chapter 1-9)
- David J. Kruglinski, George Shepherd and Scot Wingo, "Programming Visual C++", Microsoft press, 1999 (Unit II – V)

References:

• Steve Holtzner, "Visual C++ 6 Programming", Wiley Dreamtech India Pvt. Ltd., 2003.

OBJECT ORIENTED SOFTWARE ENGINEERING

Course Code: UCA 804 Credit Units: 04

Course Objective:

The objective of this course is to expose the students to the Fundamentals and benefits of software reuse and some reuse problems .To provide a clear understanding of the advance concepts in developing different types of reusable component and processes for reuse .

Course Contents:

Module I

Review of the traditional methodologies, Object oriented methodology, Advantage of Object oriented methodology

Module II

Fundamental concepts of Object Orientation: Object, Class, Abstraction, Interface, Implementation, Aggregation, Composition, Generalization, Sub-Class and Polymorphism, Architecture Style, Object-oriented software engineering, application & component systems, use case components, object components, layered architecture.

Module III

Sub- Systems, Services, Coupling, Cohesion and Layering, Static and dynamic aspects of collaborations

Reuse processes, Object oriented business engineering, applying business engineering to define processes & organization, application family engineering, component system engineering, application system engineering

Module IV

Organizing a reuse business: Its transaction, Management, working Component based software development: component definition, component meta model, component engineering vs application engineering

Module V

Visual Modeling, Object Oriented Modeling, Component based and Model driven development using UML:, UML Basics, Component specification, context realization, component realization cases, Actors, and 4+1View.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

 Ivan Jacobson, Griss Jacobson, Patrick Johnsson, "Software Reuse: Architecture, Process and Organization for business Success, ACM press books, 1997

References:

- Joffrey S. Poutin, "Measuring Software Reuse: Principles Practices, Economic Models", Addison Wesley, 2001
- Hans-Gerhard Gross, "Component based Software testing with UML", Springer-Verlag, Berlin, 2005

Visual Programming using VC++ LAB

Course Code: UCA 823 Credit Units: 01

Programming Language: VC++

List of Experiments:

1. Creation of a window of size 100*200 with title "Hello world".

- 2. Adding text and graphics to the window.
- 3. Handling Input.
- 4. Attaching menus
- 5. Attaching controls to the windows
 - (i)Push buttons
 - (ii)Tool bars
 - (iii)Status bars
- 6. Handelling Dialog boxes.
- 7. Handelling Common Controls.
- 8. File Handelling.

Examination Scheme:

]	ÍA.		E	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

COMMUNICATION SKILLS - VIII

Course Code: BCS 801 Credit Units: 01

Course Objective:

The modules are designed to enhance the communicative competence of the learners to equip them with efficient interpersonal communication.

Course Contents:

Module I: Dynamics of Group Discussion

Introduction, Methodology Role Functions Mannerism Guidelines

Module II: Communication through Electronic Channels

Introduction
Technology based Communication Tools
Video Conferencing
Web Conferencing
Selection of the Effective Tool
E-mails, Fax etc.

Module III: Effective Public Speaking

Types
Essentials
Success in Public Speaking
Dos and Don'ts

Examination Scheme:

Components	CT1	CT2	CAF	\mathbf{V}	GD	GP	A
Weightage (%)	20	20	25	10	10	10	5

CAF - Communication Assessment File

GD – Group Discussion

GP - Group Presentation

Text & References:

- Jermy Comfort, Speaking Effectively, et.al, Cambridge
- Krishnaswamy, N, Creative English for Communication, Macmillan
- Raman Prakash, Business Communication, Oxford.
- Taylor, Conversation in Practice,

BEHAVIOURAL SCIENCE - VIII (PERSONAL AND PROFESSIONAL EXCELLENCE)

Course Code: BSS 801 Credit Units: 01

Course Objective:

Importance of Personal and Professional excellence Inculcating the components of excellence

Course Contents:

Module I: Components of Excellence

Personal Excellence:

Identifying long-term choices and goals

Uncovering the talent, strength & style

Analyzing choke points in your personal processes by analysis in area of placements, events, seminars, conference, extracurricular activities, projects etc.

Module II: Managing Personal Effectiveness

Setting goals to maintain focus

Dimensions of personal effectiveness (self disclosure, openness to feedback and perceptiveness)

Integration of personal and organizational vision for effectiveness

A healthy balance of work and play

Managing Stress creatively and productively

Module III: Personal Success Strategy

Time management

Handling criticism and interruptions

Dealing with difficult people

Mapping and evaluating the situations

Identifying long-term goals

Module IV: Positive Personal Growth

Understanding & Developing positive emotions

Positive approach towards future

Resilience during loss and challenge

Module V: Professional Success

Building independence & interdependence

Reducing resistance to change

Continued reflection (Placements, events, seminars, conferences, projects extracurricular Activities etc.)

Module VI: End-of-Semester Appraisal

Viva based on personal journal

Assessment of Behavioural change as a result of training

Exit Level Rating by Self and Observer

Examination Scheme:

Components	SAP	A	Mid Term	VIVA	Journal for
			Test (CT)		Success (JOS)
Weightage (%)	20	05	20	30	25

FRENCH - VIII

Course Code: FLF 801 Credit Units: 02

Course Objective:

Provide students with the necessary linguistic tools

- to face up to different situations of communication
- to enhance their capacity in oral/written comprehension/expression

Course Contents:

Module B: Unités 4, 5, 6: PP. 48 - 86

Contenu lexical: Unité 4: 1. Présenter une information/les circonstances d'un événement

2. Exprimer la possibilité/la probabilité3. Exprimer une quantité indéfinie4. Comprendre et raconter un fait div

Unité 5: 1. Parler d'une passion, d'une aventure

2. Choisir/créer

3. Exprimer la surpirse/des sentiments

Unité 6: 1. Exprimer la cause et la conséquence

2. Exprimer la crainte et rassurer3. Faire une démonstration

Contenu grammatical:

la construction passive la forme impersonnelle

l'interrogation

les adjectifs et les pronoms indéfinis les pronoms interrogatifs et démonstratifs la construction avec deux pronoms

le subjonctif dans l'expression des sentiments, de la crainte, du but constructions permettant l'expression de la cause et de la conséquence

l'enchaînement des idées : succession et opposition

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• le livre à suivre: Campus: Tome 2

GERMAN - VIII

Course Code: FLG 801 Credit Units: 02

Course Objective:

To enable the students to converse, read and write in the language with the help of the basic rules of grammar, which will later help them to strengthen their language.

To give the students an insight into the culture, geography, political situation and economic opportunities available in Germany

Introduction to Advanced Grammar and Business Language and Professional Jargon

Course Contents:

Module I: Reading and comprehension

Reading texts and comprehending them

Module II: Information about German History

Acquiring information about German History through appropriate texts and stories

Module III: Bio data/Curriculam vitae

Writing a bio-data in the proper format with all essential components

Module IV: Informal letters

Reading and writing informal letters

Module V: Business etiquette

Business etiquette in Germany and types of companies

Module VI: Interview skills

To learn to face interviews Read a text 'Interviewspiel'

Module VII: Picture Description

Firstly recognize the persons or things in the picture and identify the situation depicted in the picture; Secondly answer questions of general meaning in context to the picture and also talk about the personal experiences which come to your mind upon seeing the picture.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

- Wolfgang Hieber, Lernziel Deutsch
- Hans-Heinrich Wangler, Sprachkurs Deutsch
- Schulz Griesbach, Deutsche Sprachlehre für Ausländer
- P.L Aneja, Deutsch Interessant- 1, 2 & 3
- Rosa-Maria Dallapiazza et al, Tangram Aktuell A1/1,2
- Braun, Nieder, Schmöe, Deutsch als Fremdsprache 1A, Grundkurs

SPANISH - VIII

Course Code: FLS 801 Credit Units: 02

Course Objective:

To enable students to deal with Spanish situations putting things in perspective, using Past Tense. Enabling them to comprehend and form slightly complex sentences. Give students vocabulary of various situations.

Course Contents:

Module I

Situational exercises/Picture Description:

At the cine

At the Chemist's/Hospital

Module II

At a corporate client's informal/formal meeting/gathering Looking for accommodation

Module III

Past Tense (Indefinido) of regular verbs Past Tense (Indefinido) of irregular verbs Exercises related to the above

Module IV

Past Tense (Imperfecto)

Examination Scheme:

Components	CT1	CT2	С	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

- Español En Directo I A, 1B
- Español Sin Fronteras
- Material provided by the teacher from various sources

CHINESE – VIII

Course Code: FLC 801 Credit Units: 02

Course Objective:

Paper was first invented n China in 105 AD. It was a closely guarded secret and didn't reach Europe until the 8th Century. The course aims at familiarizing the student with the basic aspects of speaking ability of Mandarin, the language of Mainland China. The course aims at training students in practical skills and nurturing them to interact with a Chinese person.

Course Contents:

Module I

Drills

Dialogue practice

Observe picture and answer the question.

The aspect particle "le" and the modal particle "le".

Module II

Optative verbs

Texts based on different topics

Enriching vocabulary by dealing with various daily scenarios and situations.

Module III

Sentences with subject predicate construction as its predicate

Pronunciation and intonation

Character writing and stroke order

Module IV

About china Part I Lesson 2, 3

Chinese to English and English to Chinese translations from the news paper.

Module V

Questions with an interrogative pronoun

Essays, writing formal letters.

Conversation practice.

Examination Scheme:

Components	CT1	CT2	C	I	V	A
Weightage (%)	20	20	20	20	15	5

C – Project + Presentation

I – Interaction/Conversation Practice

Text & References:

• "Kan tu shuo hua" Part-I Lesson 8-13

COMPILER DESIGN

Course Code: UCA 901 Credit Units: 03

Course Objective:

Compilers and interpreters are among the most widely used tools in software development. It is important for a computer scientist to understand the process by which programs written in high-level languages are translated and executed. The main objective of this course is to gain an in-depth understanding of the compilation process. After you complete this course, you should be able to: describe the theory and practice of compilation, in particular, the lexical analysis, parsing and code generation and optimization phases of compilation, and design a compiler for a concise programming language.

Course Contents:

Module I: Overview

Review of compiler phases – Informal Compiler Algorithm Notation – Symbol Table Structure – Intermediate Representations – Run Time Issues – Support for Polymorphic and Symbolic Languages.

Module II: Analysis & Attribute Grammars

Control Flow Analysis – Data Flow Analysis – Dependency analysis – Alias analysis Attribute grammars: Analysis, use, tests, and circularity, Issues in type systems.

Module III: Machine Independent Optimization

The Principal Sources of Optimization. Causes of Redundancy, A Running Example: Quicksort , Semantics-Preserving Transformations , Global Common Subexpressions , Copy Propagation, Dead-Code Elimination, Code Motion, Induction Variables and Reduction in Strength

Module IV: Machine Dependent tasks

Register Allocation – Local and Global Instruction Scheduling – Advanced Topics in Code Scheduling – Low Level Optimizations – Introduction to interprocedural analysis and scheduling.

Module V: ILP Compilation & Dynamic Compilation

ILP Compilation: Issues in compilation for ILP based processors. Effect of VLIW, Speculative, Predicated instructions, multithreaded processors.

Dynamic Compilation: Introduction, methods, case studies, implementation.

Examination Scheme:

Components	CT	H	A	V/S/Q	EE
Weightage (%)	10	7	5	8	70

Text & References:

Text:

- Steven Muchnick. Advanced Compiler Design Implementation, Morgan Kauffmann Publishers, 1997
- Aho, A. V, Sethi, R. and Ullman, J. D. Compilers: Principles, Techniques and Tools, Addison Wesley, 1986

References:

- Appel, A. W. Modern Compiler Implementation in Java, Cambridge University Press, 2000.
- Kenneth. C. Louden, Compiler Construction. Principles and Practice. Thomson, 2003.

Design of Embedded Systems

Course Code: UCA 902 Credit Units: 04

Course Objective:

The syllabus is divided into two parts, the first one deals with 8051 architecture and its interfacing with other devices. Second part of the syllabus deals with the basic embedded system and its design. A microcontroller is an integrated circuit that is programmable. The syllabus makes student perfect in assembly language programming, addressing modes etc apart from it input-output programming is discussed in detail. In the second part Embedded systems and its application is discussed.8051 C programming is also incorporated in the syllabus.

Course Contents:

Module I: Introduction to an embedded systems design

Introduction to Embedded system, Embedded System Project Management, ESD and Co-design issues in System development Process, Design cycle in the development phase for an embedded system, Use of target system or its emulator and In-circuit emulator, Use of software tools for development of an ES.

Module II: Overview of Microcontroller

Microcontroller and Embedded Processors, Overview of 8051 Microcontroller family: Architecture, basic assembly language programming concepts, The program Counter and ROM Spaces in the 8051, Data types, 8051 Flag Bits ad PSW Register, 8051 Register Banks and Stack Instruction set, Loop and Jump Instructions, Call Instructions, Time delay generations and calculations, I/O port programming Addressing Modes, accessing memory using various addressing modes, Arithmetic instructions and programs, Logical instructions, BCD and ASCII application programs, Single-bit instruction programming, Reading input pins vs. port Latch, Programming of 8051 Timers, Counter Programming.

Module III: Communication with 8051

Basics of Communication, Overview of RS-232, I²C Bus, UART, USB, IEEE 488 (GPIB), Interrupt driven applications (real time clock, serial input/output with interrupt). Introduction to 8051 C, 8051 memory constitution, Constants, variables and data types. Arrays structures and unions, pointers, Loops and decisions, Functions, Modules and programs.

Module IV: PIC MICROCONTROLLER (8-bit, 16-bit and 32-bit)

Architecture, memory organization, addressing modes, instruction set, PIC programming in Assembly & C, I/O port, Data Conversion, RAM & ROM Allocation, Timer programming, MP-LAB. PERIPHERAL OF PIC MICROCONTROLLER Timers, Interrupts I/O ports, I²C bus, A/D converter, UART, CCP modules, ADC, DAC and Sensor Interfacing, Flash and EEPROM memories.

Module V: Controllers

Study of limitation, advantage and Comparison of the architecture of different controller, Study of recent microcontroller's such as AVR controller, ARM Controller, DSP Processors and audio processors

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

Text:

- Raj Kamal, 2004, "Embedded Systems", TMH.
- James W. Stewart and Kai X. Miao, 2en Edition. "The 8051 microcontroller" Pearson Edu. Prentice Hall.
- M.A. Mazidi and J. G. Mazidi, 2004 "The 8051 Microcontroller and Embedded Systems", PHI.

References:

- David E. Simon, 1999, "An Embedded Software Primer", Pearson Education
- K.J. Ayala, 1991, "The 8051 Microcontroller", Penram International.
- Dr. Rajiv Kapadia, "8051 Microcontroller & Embedded Systems", Jaico Press
- Dr. Prasad, 2004, "Embedded Real Time System", Wiley Dreamtech.
- http://www.microchip.com

SOFTWARE PROJECT PLANNING AND MANAGEMENT

Course Code: UCA 903 Credit Units: 03

Course Objective:

- A. To provide students with a clear understanding of the unique risks, issues, and critical success factors associated with technology projects
- B. To introduce students to the role and function of project management

Course Contents:

Module I

Exposure to Software Project Management: Software development as a project, Stakeholders in software project, Software product, process, resources, quality, and cost, Objectives, issues, and problems relating to software projects.

Module II

Overview of Project Planning: Steps in project planning; Defining scope and objectives; work breakdown structure; Deliverables and other products

Module III

Software Effort Estimation: Problem in software estimation; Effort estimation techniques COCOMO model. Risk Analysis and Management: Nature and categories of risk in software development; risk Identification; Risk assessment; Risk mitigation, monitoring, and management;

Module IV

Selection of Appropriate Project Approach: Rapid application development; Waterfall model; V-process model; Spiral model; Prototyping,; Incremental delivery.

ModuleV

Software Quality Assurance: Planning for quality; Product versus process quality management; Procedural and quantitative approaches; Defect analysis and prevention; Statistical process control; Pareto analysis; Causal analysis; Quality standards; ISO 9000; Capability Maturity Model; Quality audit.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

- Software Project Management, Bob Hughes and Mike Cotterell: Tata McGraw-Hill Edition.
- Software Project Management, Joel Henry, Pearson Education.
- Software Project Management in practice, Pankaj Jalote, Pearson Education.2005
- Software Project Management by M. Cotterell
- Software Project Management by S. A. Kelkar
- Henry J. "Software Project Management-A Real world Guide to Success". Addison Wesley

COMPILER DESIGN LAB

Course Code: UCA 921 Credit Units: 01

Course Contents:

Programming Language: C/C++

Assignments:

- 1. WAP to check whether string is accepted or not for entered grammar.
- 2. WAP to convert Infix to Postfix notation.
- 3. WAP to convert Infix to Prefix notation.
- 4. WAP to find no of Tokens in an expression.
- 5. WAP to convert Regular Expression to NFA.
- 6. WAP to convert NFA to DFA.
- 7. WAP to calculate LEADING and TRAILING of a grammar.
- 8. WAP to calculate FIRST and FOLLOW of a grammar.
- 9. WAP to implement shift reduce parser.
- 10. WAP to implement top down parser.

Examination Scheme:

	J	E	E		
A	PR	PR	V		
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

SOFTWARE PROJECT PLANNING AND MANAGEMENT LAB

Course Code: UCA 922 Credit Units: 01

Course Contents:

Software Required: MS-Project

Lab Assignments

- 1. Create a MS Project application, set the file properties, and set the Project Calender.
- 2. Using project planning activities, draw the PERT for the project.
- 3. Draw the Gantt charts for the software project.
- 4. Using the SPM manage, plan and organize the project.
- 5. Using MS project, plan and organize the software and split the task.
- 6. Using MS Project Link, Move and copy tasks in Software Project
- 7. Draw the checkpoints and milestones of a project
- 8. Using MS Project do the time estimation of tasks and Set task dependencies &constraints.
- 9. Using MS Project assign the resources and set the notes for resources.
- 10. Using MS Project workspace base line the project and review the critical path

Examination Scheme:

IA				E	E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

Course Code: UCA 950 Credit Units: 10

GUIDELINES FOR PROJECT FILE AND PROJECT REPORT

Research experience is as close to a professional problem-solving activity as anything in the curriculum. It provides exposure to research methodology and an opportunity to work closely with a faculty guide. It usually requires the use of advanced concepts, a variety of experimental techniques, and state-of-the-art instrumentation. Research is genuine exploration of the unknown that leads to new knowledge which often warrants publication. But whether or not the results of a research project are publishable, the project should be communicated in the form of a research report written by the student.

Sufficient time should be allowed for satisfactory completion of reports, taking into account that initial drafts should be critically analyzed by the faculty guide and corrected by the student at each stage.

PROJECT FILE

The Project File may be a very useful tool for undertaking an assignment along-with a normal semester, an exploratory study, sponsored projects, a project undertaken during summer period or any other period where the researcher is not working with a company/organization. The project/ assignment may also be a part of the bigger research agenda being pursued by a faculty/ institution/ department

The Project File is the principal means by which the work carried out will be assessed and therefore great care should be taken in its preparation. This file may be considered in continuous assessment.

In general, the File should be comprehensive and include:

A short account of the activities that were undertaken as part of the project;

A statement about the extent to which the project has achieved its stated objectives;

A statement about the outcomes of the evaluation and dissemination processes engaged in as part of the project; Any activities planned but not yet completed as part of the project, or as a future initiative directly resulting from the project;

Any problems that have arisen and may be useful to document for future reference.

Project Report

The Project Report is the final research report that the student prepares on the project assigned to him. In case of sponsored project the lay out of the project could be as prescribed by the sponsoring organization. However, in other cases the following components should be included in the project report:

Title or Cover Page

The title page should contain Project Title; Student's Name; Programme; Year and Semester and Name of the Faculty Guide.

Acknowledgement(s)

Acknowledgment to any advisory or financial assistance received in the course of work may be given. It is incomplete without student's signature.

Abstract

A good "Abstract" should be straight to the point; not too descriptive but fully informative. First paragraph should state what was accomplished with regard to the objectives. The abstract does not have to be an entire summary of the project, but rather a concise summary of the scope and results of the project. It should not exceed more than 1000 words.

Table of Contents

Titles and subtitles are to correspond exactly with those in the text.

Introduction

Here a brief introduction to the problem that is central to the project and an outline of the structure of the rest of the report should be provided. The introduction should aim to catch the imagination of the reader, so excessive details should be avoided.

Materials and Methods

This section should aim at experimental designs, materials used (wherever applicable). Methodology should be mentioned in details including modifications undertaken, if any. It includes organization site(s), sample, instruments used with its validation, procedures followed and precautions.

Results and Discussion

Present results, discuss and compare these with those from other workers, etc. In writing this section, emphasis should be laid on what has been performed and achieved in the course of the work, rather than discuss in detail what is readily available in text books. Avoid abrupt changes in contents from section to section and maintain a lucid flow throughout the thesis. An opening and closing paragraph in every chapter could be included to aid in smooth flow.

Note that in writing the various secions, all figures and tables should as far as possible be next to the associated text, in the same orientation as the main text, numbered, and given appropriate titles or captions. All major equations should also be numbered and unless it is really necessary, do not write in "point" form.

While presenting the results, write at length about the various statistical tools used in the data interpretation. The result interpretation should be simple but full of data and statistical analysis. This data interpretation should be in congruence with the written objectives and the inferences should be drawn on data and not on impression. Avoid writing straight forward conclusion rather, it should lead to generalization of data on the chosen sample.

Results and its discussion should be supporting/contradicting with the previous research work in the given area. Usually one should not use more than two researches in either case of supporing or contradicting the present case of research.

Conclusion(s) & Recommendations

A conclusion should be the final section in which the outcome of the work is mentioned briefly. Check that your work answers the following questions:

- Did the research project meet its aims (check back to introduction for stated aims)?
- What are the main findings of the research?
- Are there any recommendations?
- Do you have any conclusion on the research process itself?

Implications for Future Research

This should bring out further prospects for the study either thrown open by the present work or with the purpose of making it more comprehensive.

Appendices

The Appendices contain material which is of interest to the reader but not an integral part of the thesis and any problem that have arisen that may be useful to document for future reference.

References

References should include papers, books etc. referred to in the body of the report. These should be written in the alphabetical order of the author's surname. The titles of journals preferably should not be abbreviated; if they are, abbreviations must comply with an internationally recognised system.

Examples

For research article

Voravuthikunchai SP, Lortheeranuwat A, Ninrprom T, Popaya W, Pongpaichit S, Supawita T. (2002) Antibacterial activity of Thai medicinal plants against enterohaemorrhagic *Escherichia coli* O157: H7. *Clin Microbiol Infect*, 8 (suppl 1): 116–117.

For book

Kowalski, M. (1976) Transduction of effectiveness in *Rhizobium meliloti*. SYMBIOTIC NITROGEN FIXATION PLANTS (editor P.S. Nutman IBP), 7: 63-67

The Layout Guidelines for the Project File & Project Report

- A4 size Paper
- Font: Arial (10 points) or Times New Roman (12 points)
- Line spacing: 1.5
- Top and bottom margins: 1 inch/ 2.5 cm; left and right margins: 1.25 inches/ 3 cm

ASSESSMENT OF THE PROJECT FILE AND THE PROJECT REPORT

Essentially, the assessment will be based on the quality of the report, the technical merit of the project and the project execution. Technical merit attempts to assess the quality and depth of the intellectual efforts put into the project. Project execution is concerned with assessing how much work has been put in.

The Project should fulfill the following assessment objectives

- Range of Research Methods used to obtain information
- Execution of Research
- Data Analysis (Analyze Quantitative/ Qualitative information)
- Quality Control
- Conclusions

Assessment Scheme:

Continuous Evaluation: 40% (Based on punctuality, regularity of work, adherence to plan and methodology,

refinements/ mid-course corrections etc. as reflected in the Project File.)

Final Evaluation: 60% (Based on the Documentation in the file, Final report layout, analysis and

results, achievement of objectives, presentation/viva)

ADVANCED DATA COMMUNICATION NETWORKS

Course Code: UCA 904 Credit Units: 03

Course Objective:

The objective of the course is to provide thorough understanding & in-depth knowledge of concepts in computer networks Such as Internet protocols and routing, local area networks, wireless communications and networking, performance analysis, congestion control, TCP, network address translation, multimedia over IP, switching and routing, mobile IP, multicasting, IPv6. Peer-to-peer networking, network security, and other current research topics. A focus will be placed on wireless networking, reflecting rapid advances in this area. This course motivates the students to explore current research areas in the same field.

Course Contents:

Module I

Uses computer networks, Reference Models, TCP/IP suite of protocols, MAC protocols for high-speed LANS, MANs, and wireless LANs. (For example, FDDI, DQDB, HIPPI, Gigabit Ethernet, Wireless Ethernet, etc.)Fast access technologies. (For example, ADSL, Cable Modem, etc.)

Module II:

Network Layer Design Issues, Routing Algorithms, Congestion Control Algorithms, Quality of Service, Internet Working, Network Layer in Internet.

IPv6 basic protocol, extensions and options, support for QoS, security, etc., Changes to other protocols, Application Programming Interface for IPv6.

Module III

Mobile IP, IP Multicasting. Multicast routing protocols, address assignments, session discovery, etc.

Module IV

The Transport Protocol: The Transport Service, Elements of transport protocol, a simple Transport Protocol, Internet Transport Protocols UDP, Internet Transport Protocols TCP, TCP extensions for high-speed networks, transaction-oriented applications Performance Issues.

The Application Layer: DNS-(Domain Name System), Electronic Mail, World Wide Web Multimedia.

Module V

Overview of network security, Secure-HTTP, SSL, ESP, Key distribution protocols. Digital signatures, digital certificates-mail Security, Web security, Social Issues.

Examination Scheme:

Components	A	CT	Н	V/S/Q	EE
Weightage (%)	5	10	7	8	70

Text & References:

Text:

- Computer Networks Andrew S Tanenbaum, 4th Edition. Pearson Education/PHI
- Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH.

References

- Computer Communications and Networking Technologies –Michael A.Gallo, William M .Hancock Thomson Publication.
- W. Stallings. Cryptography and Network Security: Principles and Practice, 2nd Edition, Prentice Hall, 1998.
- W. R. Stevens. TCP/IP Illustrated, Volume 1: The protocols, Addison Wesley, 1994.

1997.	Woolf, and S. R. A	-	

ENTERPRISE JAVA APPLICATIONS USING J2EE

Course Code: UCA 905 Credit Units: 03

Course Objective:

The objective is to equip the students with the advanced feature of contemporary java which would enable them to handle complex programs relating to managing data and processes over the network. The major objective of this course is to provide a sound foundation to the students on the concepts, precepts and practices, in a field that is of immense concern to the industry and business.

Course Contents:

Module I

J2EE Architecture, N-Tier Architecture, Application Server, Application Server Services, Server Management and Control, Configuration, Monitoring and Mapping of Server, Deployment Issues, Performance Tuning and Security.

Module II

Implementing J2EE Applications, Database connection using JDBC API, Servlets, Java Server Pages. Overview of EJB, Session EJBs, Entity EJBs, and MDB, The Model-View-Controller Architecture, Overview of Struts, Implementation of Struts Framework.

Module III

Overview of XML, XML fundamentals, well-formed XML documents, components of XML document, DTD, Attributes and Entities of DTD, XML style sheets, XSL, CSS, XML namespaces, implementing J2EE Application using XML, Deployment descriptor, Mapping file.

Module IV

Hibernate: Principles of Object Relational Mapping, Hibernate configuration, HQL making objects persistent, Hibernate semantics, Session management, flushing, concurrency and Hibernate, Optimistic and Pessimistic Locking, Object mapping Mapping simple properties, Single and multi valued associations, Bi-directional associations, Indexed collections.

Module V

Application Servers (Case Study of any one of Apache Tomcat, BEA Weblogic, JBoss), Service-Oriented Architectures SOAP, SOAP message structure, handling errors WSDL, UDDI. Java Web Service JAX-RPC.

Examination Scheme:

Components	CT	Н	V/S/Q	AT	EE
Weightage (%)	10	8	7	5	70

Text & References:

Text:

- Java 2 Unleashed (Techmedia SAMS) By Jamie Jaworski
- Professional Java Server Programming (a Press) By Allamaraju
- Developing Java Servlets (Techmedia SAMS) By James Goodwill
- Using Java 1.2 Special Edition (PHI) By Webber
- Jim Farley, William Crawford, O'Reilly and Associates, "Java Enterprise in a Nutshell", 2005
- Java Server Programming J2EE 1.4 Edition (Dreamtech)
- Brett McLaughlin, O'Reilly, "Java and XML, 2nd Edition, 2001

References:

- David Flanagan, Jim Parley, William Crawford & Kris Magnusson, Java Enterprise in a nutshell- A desktop Quick reference -O'REILLY, 2003
- Stephen Ausbury and Scott R. Weiner, Developing Java Enterprise Applications, Wiley-2001
- Jaison Hunder & William Crawford, Java Servlet Programming, O'REILLY, 2002
- Dietal and Deital, "JAVA 2" PEARSON publication
- Elliott Rusty Harold and W. Scott Means, O'Reilly, "XML in a Nutshell", 2001
- James Cooper, "Java Design Pattersn: A Tutorial", Addison Wesley
- Govind Sesadri, "Enterprise java Computing: Application and Architectures", Cambridge University Publications, 1999
- "Rule Based Expert Systems", Narosa Publishing House, 1994.

VLSI DESIGN

Course Code: UCA 907 Credit Units: 03

Course Objective:

In the recent years, IC manufacturing technology has gone through dramatic evolution and changes, continuously scaling to ever smatter dimensions. This scaling has a double impact on the design of ICs. First, the complexity of the designs that can be put on a single die has increased dramatically which led to new design methodologies. At the same time, this plunge into deep submicron space causes devices to behave differently and brings challenging issues to forefront. This course along with the course of Digital Circuits and Systems II and Analog CMOS IC design will give you many of the basic essentials to work in the area of Circuit Design. Since this course takes the latest trends in the industry into account, you will find yourself at a definite edge.

Course Contents:

Module I: Devices and the wire

Diode, dynamic and transient behaviour-diffusion capacitance, SPICE diode model.

MOSFET STATIC BEHAVIOUR: Threshold voltage and its dependence on V_{SB} MOSFET Operation in resistive and saturation region, channel length modulation, Velocity saturation and its impact on sub micron devices, sub threshold conduction, Model for manual analysis, Equivalent resistance for MOSFET in (velocity) saturated region, comparison of equations for PMOS and NMOS, depletion and enhancement device

DYNAMIC BEHAVIOUR: Channel capacitance in different regions of operation, junction capacitance, Level 1 SPICE MODELS for MOS transistors

The Wire: Interconnect parameters: resistance, capacitance and Inductance, Lumped RC model, Elmore Delay

Module II: CMOS Inverter

VTC of an ideal inverter, Switching Model of the CMOS inverter: nMOS /pMOS discharge and charge, VTC of CMOS inverter: PMOS AND NMOS operation in various regions including velocity saturation, Switching threshold, (W/L)p/(W/L)n ratio for setting desired V_M with and without velocity saturation, Noise Margins, buffer

Ratioed logic: Pseudo NMOS inverter and PMOS to NMOS ratio for performance, tristate inverter, Resistive load inverter.

Load Capacitance calculations: fan out capacitance, self capacitance calculations: Miller effect, wire capacitance; Improving delay calculation with input slope, Propagation delay: first order analysis, analysis from a design perspective, sizing a chain of inverters for minimum delay, choosing optimum number of stages

Power, Energy and Energy Delay: Dynamic power consumption, Static power, Glitches and power dissipation due to direct path currents, power and delay trade off, Transistor sizing for energy minimization

Module III: Combinational circuits

CMOS LOGIC: Good 0 and poor 0, Goo1 and poor 1, series and parallel N and P switches, 2 and Higher input NAND and NOR gates, Functions of the type (AB+C(D+E)) and their complements, XOR and XNOR gates, 2 input Multiplexer, Full Adder; Transistor sizing in CMOS logic for optimal delay,

Pseudo NMOS NAND NOR and other gates and the transistor sizing, Introduction to DSVCL logic, CPL AND/NAND, OR/NOR, XOR/XNOR gates

Logical effort, Electrical Effort, Branching effort, Examples of sizing Combinational logic chains for minimum delay. Pass-transistor logic, pass gate configurations for nmos and pmos, 2 input and 4 input MUX, XOR, XNOR and implementation of general functions like AB+AB*C+A*C*, Robust and Efficient PTL Design, Delay of Transmission Gate chain

Dynamic CMOS design: Precharge and Evaluation, charge leakage, bootstrapping, charge sharing, Cascading Dynamic Gates, DOMINO Logic, Optimization of Domino Logic Gates, simple example circuit implementations of DOMINO logic

Module IV: Sequential Logic circuits

Principle of Bistability, NAND and NOR based SR latch, and clocked SR Latch, JK latch, example of master slave flip flop, CMOS D latch, MUX based Latches, master slave edge triggered register, non ideal clocks, clock overlap, C2MOS register, TSPCR Register, Schmitt Trigger, Pipelining and NORA CMOS

Module V: Layout Design Rules

Introduction to CMOS Process technology, Layout of CMOS inverter, CMOS NAND and NOR gates, Concept of Euler path, and stick diagrams for functions like (AB+E+CD)*

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

• Jan M Rabaey: Digital Integrated Circuits

• David Hodges et al: Analysis and Design of Digital ICs

• Kang: CMOS Digital ICs

• Weste and Harris: CMOS VLSI design

• Weste and Eshragian: Principles of CMOS VLSI Design

REAL TIME OPERATING SYSTEM

Course Code: UCA 908 Credit Units: 04

Course Objective:

The purpose of this course is to develop in-depth skills in Real Time Operating Systems. At the end of the course, student should be able to review concepts of Operating Systems, Real Time Models and Languages. Introduction to Real Time Kernels and case studies of various Real time OS

Course Contents:

Module I

Introduction to Real Time Systems, Prioritites, Embedded Systems, Task, Classification & Requirements, Deadlines, Soft, Hard.

Module II

Firm Real Time Systems, Introduction to Real Time Operating Systems, Basic Principles, system calls, Files, Processes, Design and implementation of processes, Communication between processes, operating system structures. Task Management, Inter Process Communication, Case Studies of Maruti II, HART OS, VRTX etc. Comparison and Study of RTOS -VxWorks and μ CoS, Introduction to POSIX and OSEK standards, Principles, Polled loop systems, RTOS porting to a target.

Module III

Characterizing Real Time Systems and Task, Task Assignment & Scheduling Theory, Fixed and Dynamic Priority Scheduling, Uniprocessor (RM and EDF), Multiprocessor (Utilization Balancing, Next-fit for RM & Bin-Packing Assignment for EDF) Scheduling

Module IV

Event based, Process based, Graph models, Pettrinet models, RTOS tasks, RT scheduling, Interrupt processing, Synchronization, Control blocks, Memory requirements.

Module V

Fault, Fault Classes, Fault Tolerant Real Time System, Clocks, Clock Synchronization, Issues in Real Time Software Design.

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

- Krishna, C.M, "Real Time Systems", McGraw Hill
- Jane W.S. Liu, "Real Time Systems", Pearson Education Asia
- Levi and Agarwal, "Real Time Systems", McGraw Hill
- Mathi & Joseph, "Real Time System: Specification, Validation & Analysis", PHI
- Hermann K," Real time systems-design principles for distributed embedded Applications", kluwer academic, 1995.
- Charles Crowley" operating systems- A design oriented approach" McGraw Hill.
- RAJ BUHR, DL Beily, "An introduction to real time systems" PHI, 1999.
- CM Krishna, Kang G. Shin, "Real time Systems", Mc Graw Hill, 1997.
- Raymond J.A., Donald L Baily, "An introduction to real time operating systems" PHI, 1999.

NEURAL NETWORK AND FUZZY LOGIC

Course Code: UCA 909 Credit Units: 04

Course Objective:

Fuzzy sets and fuzzy logic find many applications in the areas of stability theory, pattern recognition, controls etc. Neural Networks offer fundamentally alternative approaches to procedural programming. These systems proved their applicability to the problems where there are missing data or information or the problems which could not be defined in an algorithm. The integration of fuzzy systems and neural networks gives a tremendous potential which can be applied to many complicated problems of Artificial Intelligence and other applications in Real World Computing.

This course provides a comprehensive treatment of neural network architectures and learning algorithms, with an in-depth look at problems in data mining and in knowledge discovery.

Course Contents:

Module I

Basic neural computation models: Network and node properties. Inference and learning algorithms.

Unsupervised learning: Signal hebbian learning and competitive learning. Supervised learning: Back propagation algorithms.

Module II

Self organizing networks: Kohonen algorithm, bi-directional associative memories.

Hopfield Networks: Hopfield network algorithm.

Adaptive resonance theory: Network and learning rules. Neural network applications.

Module III

Fuzzy Sets: Operations and properties.

Fuzzy Relations: Cardinality, Operations and properties.

Value Assignments: Cosine amplitude and max-min method.

Fuzzy classification: Cluster analysis and validity, Fuzzy e-means clustering, hardening the Fuzzy e-partition.

Module IV

Fuzzification, Membership value assignments: Inference, rank ordering and angular Fuzzy sets, defuzzification methods, fuzzy logic, approximate reasoning.

Fuzzy -based systems: Canonical rule forms, decomposition of compound rules, likelihood and truth qualification, aggregation of Fuzzy rules, graphical techniques of inference.

Module V

Non linear simulation using Fuzzy rule-based systems, Fuzzy associative memories. Decision making under Fuzzy states and Fuzzy actions. Fuzzy grammar and syntactic recognition. General Fuzzy logic controllers, special forms of Fuzzy logic control system models, examples of Fuzzy control system design and control problems, industrial applications.

Mandatory Disclosure-2006

Muffakham Jah College of Engineering and Technology, Hyderabad

Examination Scheme:

Components	A	CT	S/V/Q	HA	EE
Weightage (%)	5	10	8	7	70

CT: Class Test, HA: Home Assignment, S/V/Q: Seminar/Viva/Quiz, EE: End Semester Examination; Att: Attendance

Text & References:

- Limin Fu. "Neural Networks in Computer Intelligence" McGraw Hill, 1995.
- Freeman J. A., and Skapura D. Mu. "Neural Networks Algorithms applications and Programming Techniques", Addison Wesley New York, 1991.
- Timoty J. Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill1997.
- Bart Kosho "Neural Network and Fuzzy Systems", Prentice Hall of India, 1994

ADVANCED DATA COMMUNICATION NETWORKS LAB

Course Code: UCA 923 Credit Units: 01

Course Contents:

Various installations and connections of LAN, WAN, ETC

Examination Scheme:

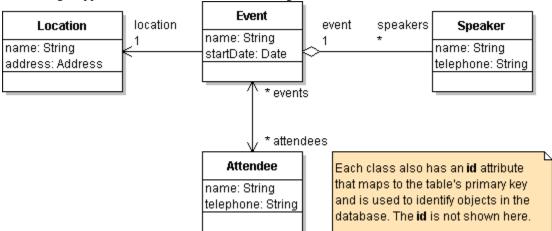
	IA				E
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

ENTERPRISE JAVA APPLICATIONS USING J2EE LAB

Course Code: UCA 924 Credit Units: 01

Course Contents:


Programming Language: JAVA

Assignments:

- 1. Write a Program to access a table Product Master from MySql4.1 database using Java code.
- 2. Write a Program using Servlet to display Visitor Count.
- 3. Write a Program using Servlet to Differentiate between Frequent visitor and a new visitor.
- 4. Write a Program for authentication, which validate the login-id and password by the servlet code.
- 5. Write a Program to connecting a database using user-id and password.
- 6. Write a Program to insert data into the database using the prepared statement.
- 7. Write a Program to read data from the database using the Resulset.
- 8. Write a Program to read data send by the client (HTML page) using servlet.
- 9. Write a Program to include a HTML page into a JSP page.

10. Write a Program to display httprequest Header in JSP.

- 11. Write a Program to handle the JSPException.
- 12. Write a Program to read data send by a client (HTML page) using JSP.
- 13. Write a Program to Develop Login Form in Struts.
- 14. Create an Enterprise application using Session Bean(Stateless) which convert the amount from Dollar to Rupees.
- 15. Write a Enterprise Session bean to simulate a income Tax Calculator.
- 16. Write a Entity bean to find a student record in student data base using primary key property.
- 17. Write a XML DTD document to validate and authenticate Student Details.
- 18. Create an XML version of the citations, Create an XML Schema that will be used to validate the XML, Create an XSL Stylesheet that will transform the citations data into HTML.
- 19. Write a Program to query record based on primary key using Hibernate.
- 20. Write a Program using Hibernate to develop classes and Hibernate configuration to persist an EventManager application. The classes in EventManager are

Examination Scheme:

IA			EE		
			AT	PR	
PR	LR	V			V
10	10	5	5	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

Website Design Methodology Lab

Course Code: UCA 925 Credit Units: 01

Software Required: Java

List of Assignment:

1. Design a HTML page using all the basic tags.

- 2. Design a page containing your educational qualification in a table.
- 3. Design a page containing an ordered list/unordered list.
- 4. Design a HTML page for your resume.
- 5. Design a form in HTML to enter different attribute of student information.
- 6. Design a home page for ASE using Frame.
- 7. Design another page and connect these to the home page.
- 8. Write a function in Javascript for input validation.
- 9. Write a function in Javascript to calculate monthly installation of the loan.
- 10. Write an input form and save its data in a database using ASP.
- 11. Display the data stored in database in tabular form on the page.

Examination Scheme:

IA				EE	
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA -Internal Assessment, EE- External Exam, PR- Performance, LR - Lab Record, V - Viva.

VLSI DESIGN LAB

Course Code: UCA 926 Credit Units: 01

Course Contents:

1. Using Design architect and simulate V vs time for CMOS inverter using same W/L ratio for PMOS and

- 2. Design and simulate again by Sizing PMOS to NMOS appropriately and repeat experiment 1
- 3. Design and simulate V vs t for 2 input NAND and Nor gates.
- 4. Design and Simulation for general CMOS functions
- 5. One bit full adder simulation6. 2:1 MUX using pass transistor logic
- 7. Other functions using pass transistor logic
- 8. Layout of CMOS inverter
- 9. Layout of NAND and NOR gates
- 10. Design and Simulation SR latch using NAND and NOR representations
- 11. Design and simulate D flip flop

Examination Scheme:

IA				EE	
A	PR	LR	V	PR	V
5	10	10	5	35	35

Note: IA –Internal Assessment, EE- External Exam, PR- Performance, LR – Lab Record, V – Viva.

SEMESTER X

DISSERTATION

Course Code: UCA 001 Credit Units: 30

GUIDELINES FOR DISSERTATION

Research experience is as close to a professional problem-solving activity as anything in the curriculum. It provides exposure to research methodology and an opportunity to work closely with a faculty guide. It usually requires the use of advanced concepts, a variety of experimental techniques, and state-of-the-art instrumentation. Research is genuine exploration of the unknown that leads to new knowledge which often warrants publication. But whether or not the results of a research project are publishable, the project should be communicated in the form of a research report written by the student.

Sufficient time should be allowed for satisfactory completion of reports, taking into account that initial drafts should be critiqued by the faculty guide and corrected by the student at each stage.

The File is the principal means by which the work carried out will be assessed and therefore great care should be taken in its preparation.

In general, the File should be comprehensive and include

A short account of the activities that were undertaken as part of the project;

A statement about the extent to which the project has achieved its stated goals.

A statement about the outcomes of the evaluation and dissemination processes engaged in as part of the project; Any activities planned but not yet completed as part of the DISSERTION, or as a future initiative directly resulting from the project;

Any problems that have arisen that may be useful to document for future reference.

> Report Layout

The report should contain the following components:

> Title or Cover Page

The title page should contain the following information: Project Title; Student's Name; Course; Year; Supervisor's Name.

> Acknowledgements (optional)

Acknowledgment to any advisory or financial assistance received in the course of work may be given.

Abstract

A good "Abstract" should be straight to the point; not too descriptive but fully informative. First paragraph should state what was accomplished with regard to the objectives. The abstract does not have to be an entire summary of the project, but rather a concise summary of the scope and results of the project

> Table of Contents

Titles and subtitles are to correspond exactly with those in the text.

Introduction

Here a brief introduction to the problem that is central to the project and an outline of the structure of the rest of the report should be provided. The introduction should aim to catch the imagination of the reader, so excessive details should be avoided.

Materials and Methods

This section should aim at experimental designs, materials used. Methodology should be mentioned in details including modifications if any.

> Results and Discussion

Present results, discuss and compare these with those from other workers, etc. In writing these section, emphasis should be given on what has been performed and achieved in the course of the work, rather than discuss in detail what is readily available in text books. Avoid abrupt changes in contents from section to section and maintain a lucid flow throughout the thesis. An opening and closing paragraph in every chapter could be included to aid in smooth flow.

Note that in writing the various secions, all figures and tables should as far as possible be next to the associated text, in the same orientation as the main text, numbered, and given appropriate titles or captions. All major equations should also be numbered and unless it is really necessary never write in "point" form.

Conclusion

A conclusion should be the final section in which the outcome of the work is mentioned briefly.

> Future prospects

> Appendices

The Appendix contains material which is of interest to the reader but not an integral part of the thesis and any problem that have arisen that may be useful to document for future reference.

> References / Bibliography

This should include papers and books referred to in the body of the report. These should be ordered alphabetically on the author's surname. The titles of journals preferably should not be abbreviated; if they are, abbreviations must comply with an internationally recognised system.

Examples

For research article

Voravuthikunchai SP, Lortheeranuwat A, Ninrprom T, Popaya W, Pongpaichit S, Supawita T. (2002) Antibacterial activity of Thai medicinal plants against enterohaemorrhagic *Escherichia coli* O157: H7. *Clin Microbiol Infect*, **8** (suppl 1): 116–117.

For book

Kowalski, M. (1976) Transduction of effectiveness in *Rhizobium meliloti*. SYMBIOTIC NITROGEN FIXATION PLANTS (editor P.S. Nutman IBP), 7: 63-67

ASSESSMENT OF THE DISSERTATION FILE

Essentially, marking will be based on the following criteria: the quality of the report, the technical merit of the project and the project execution.

Technical merit attempts to assess the quality and depth of the intellectual efforts put into the project.

Project execution is concerned with assessing how much work has been put in.

The File should fulfill the following assessment objectives:

Range of Research Methods used to obtain information

Execution of Research

Data Analysis

Analyse Quantitative/ Qualitative information Control Quality

Draw Conclusions

Examination Scheme:

Dissertation 50 Viva Voce 50

Total 100

ata, leading to production of a structured report.

Selecting the Dissertation Topic

It is usual to give you some discretion in the choice of topic for the dissertation and the approach to be adopted. You will need to ensure that your dissertation is related to your field of specialization.

Deciding this is often the most difficult part of the dissertation process, and perhaps, you have been thinking of a topic for some time.

It is important to distinguish here between 'dissertation topic' and 'dissertation title'. The topic is the specific area that you wish to investigate. The title may not be decided until the dissertation has been written so as to reflect its content properly.

Few restrictions are placed on the choice of the topic. Normally we would expect it to be:

- relevant to business, defined broadly;
- related to one or more of the subjects or areas of study within the core program and specialisation stream;
- clearly focused so as to facilitate an in-depth approach, subject to the availability of adequate sources of information and to your own knowledge;
- of value and interest to you and your personal and professional development.

Planning the Dissertation

This will entail following:

- Selecting a topic for investigation.
- Establishing the precise focus of your study by deciding on the aims and objectives of the dissertation, or formulating questions to be investigated. Consider very carefully what is worth investigating and its feasibility.
- Drawing up initial dissertation outlines considering the aims and objectives of the dissertation. Workout various stages of dissertation
- Devising a timetable to ensure that all stages of dissertation are completed in time. The timetable should include writing of the dissertation and regular meetings with your dissertation guide.

The Dissertation plan or outline

It is recommended that you should have a dissertation plan to guide you right from the outset. Essentially, the dissertation plan is an outline of what you intend to do, chapter wise and therefore should reflect the aims and objectives of your dissertation.

There are several reasons for having a dissertation plan

- It provides a focus to your thoughts.
- It provides your faculty-guide with an opportunity, at an early stage of your work, to make constructive comments and help guide the direction of your research.
- The writing of a plan is the first formal stage of the writing process, and therefore helps build up your confidence.
- In many ways, the plan encourages you to come to terms with the reading, thinking and writing in a systematic and integrated way, with plenty of time left for changes.
- Finally, the dissertation plan generally provides a revision point in the development of your dissertation report in order to allow appropriate changes in the scope and even direction of your work as it progresses.

Keeping records

This includes the following:

- Making a note of everything you read; including those discarded.
- Ensuring that when recording sources, author's name and initials, date of publication, title, place of publication and publisher are included. (You may consider starting a card index or database from the outset). Making an accurate note of all quotations at the time you read them.
- Make clear what is a direct a direct quotation and what is your paraphrase.

Dissertation format

All students must follow the following rules in submitting their dissertation.

- Front page should provide title, author, Name of degree/diploma and the date of submission.
- Second page should be the table of contents giving page references for each chapter and section.
- The next page should be the table of appendices, graphs and tables giving titles and page references.
- Next to follow should be a synopsis or abstract of the dissertation (approximately 500 words)

- Next is the 'acknowledgements'.
- Chapter I should be a general introduction, giving the background to the dissertation, the objectives of the dissertation, the rationale for the dissertation, the plan, methodological issues and problems. The limitations of the dissertation should also be hinted in this chapter.
- Other chapters will constitute the body of the dissertation. The number of chapters and their sequence will usually vary depending on, among others, on a critical review of the previous relevant work relating to your major findings, a discussion of their implications, and conclusions, possibly with a suggestion of the direction of future research on the area.
- After this concluding chapter, you should give a list of all the references you have used. These should be cross references with your text. For articles from journals, the following details are required e.g.

Draper P and Pandyal K. 1991, The Investment Trust Discount Revisited, Journal of Business Finance and Accounting, Vol18, No6, Nov, pp 791-832.

For books, the following details are required:

Levi, M. 1996, International Financial Management, Prentice Hall, New York, 3rd Ed, 1996

• Finally, you should give any appendices. These should only include relevant statistical data or material that cannot be fitted into the above categories.

The Layout Guidelines for the Dissertation

- A4 size Paper
- Font: Arial (10 points) or Times New Roman (12 points)
- Line spacing: 1.5
- Top and bottom margins: 1 inch/ 2.5 cm; left and right margins: 1.25 inches/ 3 cm

Guidelines for the assessment of the Dissertation

While evaluating the dissertation, faculty guide will consider the following aspects:

- 1. Has the student made a clear statement of the objective or objective(s).
- 2. If there is more than one objective, do these constitute parts of a whole?
- 3. Has the student developed an appropriate analytical framework for addressing the problem at hand.
- 4. Is this based on up-to-date developments in the topic area?
- 5. Has the student collected information / data suitable to the frameworks?
- 6. Are the techniques employed by the student to analyse the data / information appropriate and relevant?

40%

- 7. Has the student succeeded in drawing conclusion form the analysis?
- 8. Do the conclusions relate well to the objectives of the project?
- 9. Has the student been regular in his work?
- 10. Layout of the written report.

Assessment Scheme:

Continuous Evaluation:

(Daged on Abstract Decylority	
(Based on Abstract, Regularity,	
Adherence to initial plan, Records etc.)	
•	
Final Evaluation: Based on,	60%
Contents & Layout of the Report,	20
Conceptual Framework,	05
Objectives & Methodology and	05
Implications & Conclusions	10
Viva & Presentation	20